Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we adopt direct method to prove the Hyers-Ulam-Rassias stability of an additive-quadratic-cubic-quartic functional equation f(x+2y)+f(x-2y) = 4f(x+y)+4f(x-y)-6f(x)+f(2y)+f(-2y)-4f(y)-4f(-y) in non-Archimedean (n,β)-normed spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
130--146
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- College of Mathematics and Information Science, Hebei Normal University, and Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
autor
- College of Mathematics and Information Science, Hebei Normal University, and Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
autor
- College of Mathematics and Information Science, Hebei Normal University, and Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
Bibliografia
- [1] Ulam S. M., A Collection of Mathematical Problems, Interscience Pulb., New York, 1960
- [2] Hyers D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 1941, 27(4), 222–224
- [3] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297–300
- [4] Jung S. M., Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011
- [5] Miheț D., Radu V., On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 2008, 343, 567–572
- [6] Mirzavaziri M., Moslehian M. S., A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 2006, 37(3), 361–376
- [7] Moslehian M. S., Rassias Th. M., Orthogonal stability of additive type equations, Aequationes Math., 2007, 73(3), 249–259
- [8] Najati A., On the stability of a quartic functional equation, J. Math. Anal. Appl., 2008, 340(1), 569–574
- [9] Park C., Cho Y. J., Kenary H. A., Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl., 2012, 14(1), 526–535
- [10] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4, 91–96
- [11] Saadati R., Park C., Non-ArchimedeanL–fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 2010, 60(8), 2488–2496
- [12] Kannappan Pl., Functional Equations and Inequalities with Applications, Springer, 2009
- [13] Lee Y. H., Jung S.-M., Rassias M. Th., Uniqueness theorems on functional inequalities concerning cubic–quadratic–additive equation, J. Math. Inequal, 2018, 12(1), 43–61
- [14] Abdollahpour M. R., Aghayari R., Rassias M. Th., Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 2016, 437(1), 605–612
- [15] Jung S.-M., Hyers-Ulam-Rassias stability of functional equations, Dynamic Syst. Appl., 1997, 6, 541–566
- [16] Yang X., Chang L., Liu G., Shen G., Stability of functional equations in (n,β)–normed spaces, J. Inequal. Appl., 2015, 2015:112
- [17] Park C., Jang S. Y., Lee J. R., Shin D. Y., On the stability of an AQCQ–functional equantion in radom normed spaces, J. Inequal. Appl., 2011, 2011:34
- [18] Hensel K., Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Dtsch. Math.-Ver., 1897, 6, 83–88
- [19] Katsaras A. K., Beloyiannis A., Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., 1999, 6(1), 33–44
- [20] Khrennikov A. Y., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997
- [21] Nyikos P. J., On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl., 1999, 91(1), 1–23
- [22] Moslehian M. S., Sadeghi Gh., A Mazur–Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 2008, 69(10), 3405–3408
- [23] Gordji M. E., Gharetapeh S. K., Park C., Zolfaghari S., Stability of an additive–cubic–quartic functional equations, Adv. Difference Equ., 2009, 2009:395693
- [24] Gordji M. E., Abbaszadeh S., Park C., On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl., 2009, 2009:153084
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c85ffea8-ae7a-46ee-a303-b7904c3695b0