PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stratovolcanoes on the Chilean-Bolivian border as geoatraction

Treść / Zawartość
Warianty tytułu
PL
Stratowulkany na granicy chilijsko-boliwijskiej jako geoatrakcje
Języki publikacji
EN
Abstrakty
EN
The cluster of stratovolcanoes located on the Chilean-Bolivian border, in the Western Cordillera, is composed of typical, for that part of the Central Volcanic Zone in the Andes, volcanic landforms. The highest volcano is the Nevado Sajama (6,542 m a.s.l.), apparently extinct. The other: Parinacota (6,336 m a.s.l.), Pomerape (6,222 m a.s.l.), Acotango (6,052 m a.s.l.) and Cerro Quisiquisini (5,542 m a.s.l.) were all active in both the Pleistocene and the Holocene. Recently, only the Guallatiri Volcano (6,071 m a.s.l.) is still active. The summits of these mountains are covered with permanent snow or ice caps. On the slopes, there are post-glacial valleys, rocks glaciers and debris avalanches. In the vicinity of volcanic cones, active fumaroles occur, along with hot springs, geysers and high-mountain peat bogs (bofedales), in addition to one of the highest in the world mountain lakes  – the Lago Chungará (4,520 m a.s.l.). The unique landform is a huge debris avalanche and was formed during the eruption of the Parinacota Volcano. Small villages settled by Aymara Indians and their cultural monuments complete the extraordinary landscape of the Altiplano Plateau. The values of biotic nature are also unique and deserving of protection on both sides of the state border. Moreover, these sites have been registered into the UNESCO World Heritage List. Modest accommodation facilities located off the main roads satisfy the qualified tourists interested in volcanology. The authors describe the grueling trekking trails, the climbing routes leading to the summits of volcanoes and the other geoattractions, accessible for ordinary hikers.
PL
Stratowulkany zgrupowane na chilijsko-boliwijskiej granicy, w Kordylierze Zachodniej, są klasycznymi formami dla tej części Centralnej Strefy Wulkanicznej w Andach. Najwyższy jest wygasły wulkan Nevado Sajama (6542 m n.p.m.). Wulkany Parinacota (6336 m n.p.m.), Pomerape (6222 m n.p.m.), Acotango (6052 m n.p.m.) i Cerro Quisiquisini (5542 m n.p.m.) były aktywne w plejstocenie i holocenie. Jedynie wulkan Guallatiri (6071 m n.p.m.) pozostaje nadal aktywny. Ich wierzchołki pokryte są wiecznym śniegiem lub czapą lodową. Na stokach wulkanów występują doliny polodowcowe, lawiny i lodowce gruzowe. W ich sąsiedztwie są aktywne fumarole, gejzery, gorące źródła, wysokogórskie torfowiska bofedales, a także jedno z najwyżej położonych jezior górskich na świecie  – Lago Chungará (4520 m n.p.m.). Rzadko spotykaną formą jest wielkich rozmiarów lawina gruzowa, która powstała podczas erupcji wulkanu Parinacota. Małe osady Indian Aymara i zabytki ich kultury dopełniają niezwykłego charakteru krajobrazu pustkowi na Altiplano. Przyroda ożywiona po obu stronach granicy Boliwii z Chile jest na tyle wyjątkowa, że została wpisana na Listę Światowego Dziedzictwa UNESCO. Położenie na uboczu szlaków komunikacyjnych oraz skromna baza noclegowa gwarantują wykwalifikowanemu turyście zainteresowanemu wulkanologią wrażenie odkrywania nowych, dzikich szlaków. W pracy opisano zarówno trudno dostępne szlaki na szczyty wulkanów, jak i geoatrakcje spotykane na trasie górskiego trekkingu.
Rocznik
Strony
47--64
Opis fizyczny
Bibliogr. 52 poz., rys., tab., zdj.
Twórcy
  • KGHM Polska Miedź SA, Polkowice-Sieroszowice Mine, Kaźmierzów 100, 59-101 Polkowice, Poland
  • Division of Mineral Policy, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7A, 31-261 Krakow, Poland
Bibliografia
  • [1] Alzérreca H., Prieto G., Laura J., Luna D. & Laguna S., 2001. Características y distribución de los bofedales en el Ámbito Boliviano. Report, El Programa de las Naciones Unidas para el Desarrollo. La Paz, Bolivia.
  • [2] Bao R., Hernández A., Sáez A., Giralt S., Prego R., Pueyo J.J., Moreno A. & Valero-Garcés B.L., 2015. Climatic and lacustrine morphometric controls of diatom paleoproductivity in a tropical Andean lake. Quaternary Science Reviews, 129: 96–110.
  • [3] Beck S., Domic A., Garcia C., Meneses R.I., Yager K. & Halloy S., 2010. El Parque Nacional Sajama y sus Plantas. Herbario Nacional de Bolivia-Fundacion PUMA, La Paz.
  • [4] Biggar J., 2005. The Andes. A Guide for Climbers. 3rd ed. Andes, Scotland.
  • [5] Birge A., 2016. Ritualized Memory and Landscape at Pueblo Sajama, Bolivia: A Study of a Sacred Landscape and Colonial Encounter. The University of Texas at San Antonio [MA thesis].
  • [6] Brain Y., 1999. Bolivia. A Climbing Guide. The Mountaineers, Seattle.
  • [7] Briones L., 2006. The geoglyphs of the north Chilean desert: an archaeological and artistic perspective. Antiquity, 80(307): 9–24.
  • [8] Clavero J.E., Sparks R.S.J., Huppert H.E. & Dade W.B., 2002. Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bulletin of Volcanology, 64(1): 40–54.
  • [9] De Silva S.L. & Francis P.W., 1991. Volcanoes of the Central Andes. Springer-Verlag Berlin Heidelberg.
  • [10] Echevarría E., Kiełkowska M., Kiełkowski J. & Sas-Nowosielski K., 2009. Wielka encyklopedia gór i alpinizmu. T. 4: Góry Ameryki. Kiełkowska M., Kiełkowski J. (red.), Wydawnictwo “Stapis”, Katowice.
  • [11] Francis P.W. & Wells G.L., 1988. Landsat thematic mapper observations of debris avalanche deposits in the Central Andes. Bulletin of Volcanology, 50(4): 258–278.
  • [12] González-Ferrán O., 1995. Volcanes de Chile. Instituto Geográfico Militar, Santiago, Chile.
  • [13] Hoffmann D., 2007. The Sajama National Park in Bolivia. Mountain Research and Development, 27(1): 11–14.
  • [14] Inostroza M., Tassi F., Aguilera F., Sepúlveda J., Capecchiacci F., Venturi S. & Capasso G., 2020. Geochemistry of gas and water discharge from the magmatic-hydrothermal system of Guallatiri volcano, northern Chile. Bulletin of Volcanology, 82(7): 1–16.
  • [15] Janus T. & Piechocki J., 2016. Wybrane stany zagrożenia zdrowia i życia związane z przebywaniem na dużej wysokości. Anestezjologia i Ratownictwo, 10(1): 103–111.
  • [16] Jicha B.R., Laabs B.J.C., Hora J.N., Singer B.S. & Caffee M.W., 2015. Early Holocene collapse of Volcán Parinacota, central Andes, Chile: Volcanological and paleohydrological consequences. Geological Society of America Bulletin, 127(11–12): 1681–1688.
  • [17] Kadwell M., Fernandez M., Stanley H.F., Baldi R., Wheeler J.C., Rosadio R. & Bruford M.W., 2001. Genetic analysis reveals the wild ancestors of the llama and alpaca. Proceedings of the Royal Society B: Biological Sciences, 268(1485): 2575–2584.
  • [18] Karátson D., Telbisz T. & Wörner G., 2012. Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: An SRTM DEM based analysis. Geomorphology, 139–140: 122–135.
  • [19] Kessler M., 2006. Bosques de Polylepis. In: Moraes M., Øllgaard B., Kvist L.P., Borchsenius F. & Balslev H. (eds.), Botánica económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz.
  • [20] Krzeszowiak J., Michalak A. & Pawlas K., 2014. Zagrożenia zdrowotne w środowisku górskim. Medycyna Środowiskowa, 17(2): 61–68.
  • [21] Lipman P.W. & Mullineaux D.R., 1981. The 1980 eruptions of Mount St. Helens, Washington. Geological Survey Professional Paper 1250.
  • [22] Mariño J., Cueva K., Thouret, J.C., Arias C., Finizola A., Antoine R., Delcher E., Fauchard C., Donnadieu F., Labazuy P., Japura S., Gusset R., Sanchez P., Ramos D., Macedo L., Lazarte I., Thouret L., Carpio J., Jaime L. & Saintenoy T., 2021. Multidisciplinary study of the impacts of the 1600 CE Huaynaputina eruption and a project for geosites and geo-touristic attractions. Geoheritage, 13(3): 64.
  • [23] Mühlhauser H.A., Hrepic N., Mladinic P., Montecino V. & Cabrera S., 1995. Water-quality and limnological features of a high-altitude Andean lake, Chungará, in northern Chile. Revista Chilena de Historia Natural, 68: 341–349.
  • [24] Oppenheimer C., 2011. Eruptions that Shook the World. Cambridge University Press, Cambridge.
  • [25] Paulo A., 2015. Parki narodowe Andów dorzecza Amazonki w południowej Kolumbii, Ekwadorze, Peru i Boliwii. Pamiętnik Polskiego Towarzystwa Tatrzańskiego, 23: 163–202.
  • [26] Pugnaire F.I., Morillo J.A., Armas C., Rodríguez-Echeverría S. & Gaxiola A., 2020. Azorella compacta: Survival champions in extreme, high-elevation environments. Ecosphere, 11(2): 1–5.
  • [27] Rangecroft S., Harrison S., Anderson K., Magrath J., Castel A. & Pacheco P., 2013. Climate change and water resources in arid mountains: an example from the Bolivian Andes. AMBIO, 42(7): 852–863.
  • [28] Rangecroft S., Harrison S. & Anderson K., 2015. Rock glaciers as water stores in the Bolivian Andes: an assessment of their hydrological importance. Arctic, Antarctic, and Alpine Research, 47(1): 89–98.
  • [29] Reinhard J., 1985. Sacred mountains: An ethno-archaeological study of high Andean ruins. Mountain Research and Development, 5(4): 299–317.
  • [30] Reinhard J., 1988. The Nazca lines, water and mountains: An ethno-archaeological study. In: Saunders N., Montmollin O., de (eds.), Recent Studies in Pre-Columbian Archaeology. British Archaeological Reports, Oxford: 363–414.
  • [31] Reinhard J., 1999. Zaklęte w lodzie. National Geographic Polska, 2: 56–75.
  • [32] Reinhard J. & Ceruti C., 2005. Sacred mountains, ceremonial sites, and human sacrifice among the Incas. Archaeoastronomy, XIX: 1–43.
  • [33] Ruggles C. & Saunders N.J., 2012. Desert labyrinth: lines, landscape and meaning at Nazca, Peru. Antiquity, 86(334): 1126–1140.
  • [34] Rundel P.W. & Palma B., 2000. Preserving the unique puna ecosystems of the Andean Altiplano: a descriptive account of Lauca National Park, Chile. Mountain Research and Development, 20(3): 262–271.
  • [35] Ruthsatz B., 2012. Vegetación y ecología de los bofedales altoandinos de Bolivia. Phytocoenologia, 42(3–4), 133–179.
  • [36] Ryn Z., 1977. Sanktuaria na szczytach Andów. Wierchy, 46: 37–64.
  • [37] Scandiffio G. & Rodriguez J., 1992. Geochemical report on the Sajama geothermal area, Bolivia. In: Estudios geotérmicos con técnicas isotópicas y geoquímicas en América Latina. IAEA-TECDOC 641, Organismo Internacional de Energia Atomica: 141–167.
  • [38] Schoolmeester T., Johansen K.S., Alfthan B., Baker E., Hesping M. & Verbist K., 2018. Atlas de Glaciares y Aguas Andinos. El impacto del retroceso de los glaciares sobre los recursos hídricos. UNESCO, GRID-Arendal.
  • [39] Siebert L., 1996. Hazards of large volcanic debris avalanches and associated eruptive phenomena. In: Scarpa R., Tilling R.I. (eds), Monitoring and Mitigation of Volcano Hazards. Springer-Verlag Berlin Heidelberg: 541–572.
  • [40] Simkin T. & Siebert L., 1994. Volcanoes of the World  – A Regional Directory, Gazetteer and Chronology of Volcanism During the Last 10,000 Years. 2nd ed. Geosciences Press, Tucson.
  • [41] Stern C.R., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile, 31(2): 161–206.
  • [42] Valenzuela D. & Clarkson P.B., 2014. Geoglyphs. In: Smith C. (ed.), Encyclopedia of Global Archaeology. Springer Science+Business Media New York: 3017–3029.
  • [43] Villarroel E.K., Mollinedo P.L.P., Domic A.I., Capriles J.M. & Espinoza C., 2014. Local management of Andean Wetlands in Sajama National Park, Bolivia: Persistence of the collective system in increasingly family-oriented arrangements. Mountain Research and Development, 34(4): 356–368.
  • [44] Vuille M., Francou B., Wagnon P., Juen I., Kaser G., Mark B.G. & Bradley R.S., 2008. Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 89(3–4): 79–96.
  • [45] Wheeler J.C. & Laker J., 2009. The Vicuña in the Andean Altiplano. In: Gordon I.J. (ed.), The Vicuña: The Theory and Practice of Community Based Wildlife Management. Springer New York: 21–33.
  • [46] Wörner G., Harmon R.S., Davidson J., Moorbath S., Turner D.L., McMillan D.L., Nye C., Lopez-Escobar L. & Moreno H., 1988. The Nevados de Payachata volcanic region (18°S/69°W, N. Chile). Bulletin of Volcanology, 50(5): 287–303.
  • [47] Wörner G., Hammerschmidt K., Henjes-Kunst F., Lezaun J. & Wilke H., 2000. Geochronology (40Ar/39Ar, K-Ar, and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18–22°S): implications for magmatism and tectonic evolution of the Central Andes. Revista Geológica de Chile, 27(2): 205–240.
  • [48] Yager K., Valdivia C., Slayback D., Jimenez E., Meneses R.I., Palabral A., Bracho M., Romero D., Hubbard A., Pacheco P., Calle A., Alberto H., Yana O., Ulloa D., Zeballos G. & Romero A., 2019. Socio-ecological dimensions of Andean pastoral landscape change: bridging traditional ecological knowledge and satellite image analysis in Sajama National Park, Bolivia. Regional Environmental Change, 19(5): 1353–1369.
  • [49] Yensen E., Tarifa T. & Anderson S., 1994. New distributional records of some Bolivian mammals. Mammalia, 58(3): 405–414.
  • [50] www1  – http://sernap.gob.bo/sajama/ [accessed: 2022.05.19].
  • [51] www2 – http://tpn.pl/zwiedzaj/turystyka/statystyka/ [accessed: 2022.05.19].
  • [52] www3 – http://sernap.gob.bo/sajama/atractivos-turisticos/ [accessed: 2022.05.21].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8584738-4157-404b-965e-36dce1bf6417
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.