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Abstract. This is the continuation of four earlier studies of a scalar fractional differential
equation of Riemann-Liouville type

Dqx(t) = −f(t, x(t)), lim
t→0+

t1−qx(t) = x0 ∈ < (0 < q < 1), (a)

in which we first invert it as a Volterra integral equation

x(t) = x0tq−1 − 1
Γ(q)

t∫

0

(t− s)q−1f(s, x(s)) ds (b)

and then transform it into

x(t) = x0tq−1 −
t∫

0

R(t− s)x0sq−1ds+
t∫

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds, (c)

where R is completely monotone with
∫∞

0 R(s) ds = 1 and J is an arbitrary positive constant.
Notice that when x is restricted to a bounded set, then by choosing J large enough, we can
frequently change the sign of the integrand in going from (b) to (c). Moreover, the same kind
of transformation will produce a similar effect in a wide variety of integral equations from
applied mathematics. Because of that change in sign, we can obtain an a priori upper bound
on solutions of (b) with a parameter λ ∈ (0, 1] and then obtain an a priori lower bound on
solutions of (c). Using this property and Schaefer’s fixed point theorem, we obtain positive
solutions of an array of fractional differential equations of both Caputo and Riemann-Liouville
type as well as problems from turbulence, heat transfer, and equations of logistic growth.
Very simple results establishing global existence and uniqueness of solutions are also obtained
in the same way.
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1. INTRODUCTION

Positive solutions of differential and integral equations is a central property in many
areas of applied mathematics. There are entire books devoted to the subject such
as [1] and [2]. Population problems are frequently meaningless unless the discussion
is restricted to positive populations. Positive solutions of heat conduction problems
provide a foundation for much of resolvent theory. This is seen in a good portion of
Chapter IV of [21].

In this paper we will offer two keys to the search for positive solutions of a wide area
of integral equations. These keys are Schaefer’s fixed point theorem and a transforma-
tion in which the integrand of the integral equation changes sign as we transform from
one equation to the next. The first form provides an upper bound for the solution on
an interval (0, E] of arbitrary length. At this point the first form does something very
interesting. Having provided an upper bound for the solution, it then goes to work and
helps the second form provide a lower bound for the solution. See, for example, items
1–3 in Example 5.1 found in Section 5. These two bounds offer the a priori bound
needed for Schaefer’s theorem which then provides the existence of a solution residing
between those two bounds and being valid on an arbitrarily long interval, (0, E]. If
solutions are unique that solution is then continued to (0,∞). In addition to the
a priori bound, Schaefer’s theorem also requires certain continuity and compactness
conditions very much like those of Schauder’s theorem. We offer several lemmas in
Section 4 showing that these properties are quite automatic for a wide class of integral
equations from applied mathematics. The result of this is that nothing except the
a priori bound need be established.

We illustrate the theory with examples from applied mathematics including frac-
tional differential equations of both Riemann-Liouville and Caputo type, both of which
are used to model a myriad of real-world problems. It is relatively simple to put all of
the equations considered into the form needed for this work, with one exception. That
exception is the Riemann-Liouville type. Since such equations are of prime interest in
applied mathematics, we start with them and devote a major part of this paper to
showing the aforementioned transformation for them.

Thus, we start with a scalar fractional differential equation of Riemann-Liouville
type and introduce a parameter λ ∈ (0, 1] which is used in Schaefer’s theorem. It is
introduced early because we will take a transformation and we want to see where λ
will appear in each equation. In the final conclusions, we will always say that there is
a solution with given properties for λ = 1.

There is yet a third interesting part of this two-step process of finding the a priori
bound. The reader may note as we go through Theorems 2.2 and 4.1, together with
the six examples in Section 5, that the arguments for that upper and lower bound on
all possible solutions for all λ ∈ (0, 1] are all satisfied at λ = 1. This is very unusual in
applications of Schaefer’s theorem. In Example 5.6 of Section 5 we leave out the λ
and invite the reader to supply it in order to emphasize this feature.

Schaefer’s theorem [27, p. 29] will dictate what we do.
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Theorem 1.1 (Schaefer). Let (B, ‖ · ‖) be a normed space, P a continuous mapping
of B into B which is compact on each bounded subset X of B. Then either

(i) the equation x = λPx has a solution for λ = 1, or
(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

Item (ii) of the theorem often causes the reader to stumble. But a study of the
proof makes it clear that this is to be read as: The set of all such solutions x, if any,
for 0 < λ < 1, is unbounded.

The integral equation will define a natural mapping, P , and we see from (i) that
a parameter λ is introduced. Our equation will go through a transformation and it
will be important to see exactly where that parameter is at each stage. One way of
doing so is illustrated in the way we set up the equation. Once we have established the
bound discussed in (ii), then the value λ = 1 will be selected and we will proceed to
establish the other conditions of the theorem for P . Looking at (1.1) and (1.2) with
λ = 1 reveals the problems we have set out to solve.

For the presentation of fractional equations, we begin by writing

Dqx(t) = −λf(t, x(t)), 0 < q < 1, lim
t↓0

t1−qx(t) = λx0 ∈ <, (1.1)

where 0 < λ ≤ 1, x0 6= 0 and f : (0,∞) × < → < with f continuous and f(t, x) > 0
if x > 0. The set of real numbers is designated in this paper by <. We later indicate
that we can extend the problem to include

Dqx(t) = −λf(t, x(t)) + p(t)

with p(t) > 0 and continuous, but it obscures the simplicity of the method presented
here. That fractional derivative is defined by

Dqx(t) := 1
Γ(1− q)

d

dt

t∫

0

(t− s)−qx(s) ds

where Γ(q) is the Euler Gamma function. Equation (1.1) is formally inverted as the
Volterra integral equation

x(t) = λx0tq−1 − 1
Γ(q)

t∫

0

(t− s)q−1λf(s, x(s)) ds. (1.2)

Substantial treatments of these equations are found in Diethelm [14], Kilbas et al. [18],
Lakshmikantham et al. [19], and Podlubny [25]. An annotated bibliography is found
in Oldham and Spanier [23]. That bibliography is very informative concerning both
history and application.
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An understanding of the equations begins with the definition of a solution of (1.2).

Definition 1.2. For a given q ∈ (0, 1) and a T ∈ (0,∞) a continuous function
φ : (0, T ]→ < is said to be a solution of (1.2) if φ satisfies (1.2) on (0, T ] and if

t1−qφ(t) is continuous on [0, T ] with lim
t→0+

t1−qφ(t) = λx0.

A basic result linking (1.1) and (1.2) is found in [5]. It states that if x is a continuous
solution of (1.2) on (0, T ], then it is also a solution of (1.1) provided that

T∫

0

[|x(s)|+ |f(s, x(s))|] ds <∞. (1.3)

Moreover, it is shown in Theorem 2.4 of [6] that for each ε ∈ (0, λ|x0|), there is a
T ∗ ≤ T so that

(λ|x0| − ε)tq−1 < |x(t)| < (λ|x0|+ ε)tq−1 < 2λ|x0|tq−1 (1.4)

for 0 < t ≤ T ∗ and that x(t) has the sign of x0 on this interval. If f satisfies polynomial
growth, then we may use (1.4) in the integral appearing in (1.2) and use the Beta
function to show when that integral exists. This is discussed in some detail in [6] and
the example f(t, x) = x2n+1 is featured, showing (in (2.18) of that paper) that the
integral in (1.3) will exist if and only if 1 > q > 2n/(2n+ 1), a necessary and sufficient
condition for (1.1) and (1.2) to share solutions for this f and for λ = 1.

Since the continuity and compactness required in Schaefer’s theorem for (1.2) is
automatic, half of the work required to establish a positive solution is contained in
the following trivial observation.

Theorem 1.3. Let f be continuous, f(t, x) > 0 for x > 0, and let x0 > 0. Suppose
that (1.2) has a positive solution on an interval (0, E] for some E > 0. Then

x(t) ≤ x0t1−q (1.5)

for 0 < t ≤ E.
Proof. To set up the theorem, notice from (1.4) that it is immediate that if (1.2) has
a solution with x0 > 0 then the solution is positive on some interval (0, T ]. Thus,
existence and x0 > 0 imply that there is an interval of the type described in the
theorem. Once we see that, then the fact that f is positive for x positive tells us that
the solution has the indicated upper bound.

This idea is not new. In the classical treatment of resolvents, Miller [21, p. 210]
gives the same argument for an equation with a continuous positive forcing function.
However, Miller then presents a complex argument showing that the solution always
remains non-negative ensuring the inequality

0 ≤ x(t) ≤ p(t)
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with p(t) the positive forcing function. For (1.2) we will show that there is a trans-
formation which yields an equation for which that lower bound is obtained as simply
as the upper bound. We finish by showing that the other requirements in Schaefer’s
theorem are automatically satisfied for equations in the general class in which (1.2)
resides. A bit more detail will help the reader see the direction we are taking.

Having shown in [5] that (1.1) and (1.2) share solutions, we then showed in [9] (see
also [6]) that (1.2) can be mapped into what will become (2.7) in the next section,
namely,

x(t) = λx0tq−1 −
t∫

0

R(t− s)λx0sq−1ds+
t∫

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds,

where J denotes a positive constant and R a completely monotone function. Locally,
R is much like tq−1. In Theorem 2.2, a positivity and growth condition on f is given
ensuring the integrand in the last term is positive if x0 > 0 and if a solution does exist
on a given interval. It follows from (2.5) and Lemma 2.1 that the sum of the first two
terms on the right-hand side is positive. It is then immediate from this and (1.2) that

0 < x(t) ≤ x0tq−1 (1.6)

and that this holds uniformly for every x0 > 0 and λ ∈ (0, 1].
We now go back to (1.2), set λ = 1, assume that there is a solution on a short

interval (0, T ], translate by y(t) = x(t+T ), define the mapping P of Schaefer’s theorem
from the natural mapping of the y equation, prove that the mapping is compact, and
walk away with a positive solution.

Next, we show that the same process works for six classical problems from applied
mathematics. Finally, we quote two known theorems which would supply that solution
on a short interval (0, T ] which we mentioned in the previous paragraph.

2. A SKETCH OF THE TRANSFORMATION

Here is a brief review of the steps transforming (1.2) to (2.7). Full details are found
in [6]. This transformation has been used in [7, 9, 10], and [11]. We will be using
a theorem on nonlinear variation of parameters found in Miller [21, pp. 191–193] and
the properties of the resolvent, R, are found on pp. 212–213 and 224. The variation of
parameters result requires an interchange in the order of integration which is valid
using (1.3) in the Hobson-Tonelli theorem [22, p. 93].

It is crucial to begin by saying that x0 > 0 and 0 < λ ≤ 1 are fixed, but arbitrary
numbers so that when we obtain our conclusion that (1.6) holds it will be clear that
this is true for every such pair of numbers. In particular, the reader needs to understand
that the resolvent R which we obtain depends on λ and J but the bounds in (2.6) do
not. This ensures the uniformity of the lower bound on the solution.
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Let J be an arbitrary positive constant and write (1.2) as

x(t) = λx0tq−1 + 1
Γ(q)

t∫

0

(t− s)q−1[−λJx(s) + λJx(s)− λf(s, x(s))] ds

= λx0tq−1 − λJ

Γ(q)

t∫

0

(t− s)q−1x(s) ds

+ J

Γ(q)

t∫

0

(t− s)q−1
[
λx(s)− λf(s, x(s))

J

]
ds.

(2.1)

Define
C(t) = λJtq−1

Γ(q) (2.2)

and write the linear part as

z(t) = λx0tq−1 −
t∫

0

C(t− s)z(s) ds (2.3)

with resolvent equation

R(t) = C(t)−
t∫

0

C(t− s)R(s) ds (2.4)

so that

z(t) = λx0tq−1 −
t∫

0

R(t− s)λx0sq−1 ds. (2.5)

Now R is completely monotone with

0 < R(t) ≤ λJtq−1

Γ(q) ≤ Jtq−1

Γ(q) ,
∞∫

0

R(s) ds = 1. (2.6)

The nonlinear variation of parameters formula [21, pp. 190–193] yields

x(t) = z(t) +
t∫

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds. (2.7)

Lemma 2.1. The function z defined by (2.5) is positive and satisfies

z(t) = x0Γ(q)R(t)
J

.
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Thus, z(t) is a constant multiple of the completely monotone function R(t); so it is
decreasing on (0,∞). It follows that for each ε > 0, z(t) is bounded on [ε,∞) and
converges to zero. Moreover, for λ ∈ (0, 1] and t > 0 we have

|z(t)| ≤ |x0|tq−1
[
1−

t∫

0

R(s) ds
]
. (2.8)

Proof. To prove the first relation, multiply (2.4) by x0Γ(q)/J to see that the given
function is the unique continuous solution of (2.5). Relation (2.8) follows from (2.5)
and the fact that tq−1 is decreasing.

This form of z in (2.7), coupled with (2.9) below, will show that any solution of
(2.7) (equivalently of (1.2)) will satisfy 0 < x(t) ≤ x0tq−1 and will be a main part in
the use of Schaefer’s fixed point theorem to show that (1.2) has a positive solution for
λ = 1.

Theorem 2.2. Let f : (0,∞) × < → < be continuous with f(t, x) > 0 for x > 0.
Suppose that for a given E > 0 and x0 > 0 there is an L > 0 such that

0 < x ≤ λx0sq−1, 0 < s ≤ E =⇒ f(s, x)
x

≤ L. (2.9)

If there is a solution x of (1.2) on (0, E], then it satisfies

0 < x(t) ≤ λx0tq−1, 0 < t ≤ E. (2.10)

Proof. The solution x(t) is initially positive since it has the same sign as x0 (cf. (1.4)).
Moreover, we see from (1.2) that so long as x(t) > 0 we have x(t) ≤ λx0tq−1. To show
that x(t) remains positive on the entire interval (0, E], suppose to the contrary that
x(t) > 0 on (0, t1) and x(t1) = 0 for some t1 ∈ (0, E]. Then it follows from (2.7) with
J = 2L that

t1∫

0

R(t1 − s)
[
x(s)− f(s, x(s))

2L

]
ds = −z(t1).

The left-hand side is positive because of (2.9) and R(t) > 0. However the right-hand
side is negative by Lemma 2.1, a contradiction.

We would be ready to use (1.2) to define the mapping of Schaefer’s theorem, but
there is a problem in that the forcing function is unbounded. To resolve this, we will
use a translation and Lemma 2.1 to move (1.2) past that vertical asymptote and
then be ready to define the mapping. We already have the a priori bound on any
solution for any λ ∈ (0, 1] and continuity of the mapping will be an elementary exercise.
We have the link between (1.1) and (1.2). Since a solution x satisfies (2.10) so that

0 < x(t) ≤ λx0tq−1, 0 < t ≤ E,
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then by (2.9) for any T ∈ (0, E] we have

T∫

0

[|x(t)|+ |f(t, x(t))|] dt ≤
T∫

0

[λx0tq−1 + Lλx0tq−1] dt = (1 + L)λx0T
q

q
.

That is, (1.3) holds. It follows that (1.1) and (1.2) share solutions; thus (2.1) is also
valid for solutions of (1.1).
There are three parts to be noted.

(a) Inequality (2.10) now establishes the bound needed in Schaefer’s theorem and at
this point λ has completed its purpose. We are now going to focus on other properties
of solutions and λ will now be replaced by one.

(b) Condition (2.9) is stringent in that it must hold for arbitrarily large x. It is
only stringent for Riemann-Liouville equations. None of the six examples in Section 5
require that condition.

(c) We view the result as new, simple, and useful, as will be seen in Section 4.
While it may be most useful if it remains simple, it clearly can be generalized.
If u : [0,∞)→ [0,∞) is continuous, then we can extend (1.1) to

Dqx(t) = −λf(t, x(s)) + λu(t)

so that (1.2) becomes

x(t) = λx0tq−1 + λ

Γ(q)

t∫

0

(t− s)q−1u(s) ds− 1
Γ(q)

t∫

0

(t− s)q−1λf(s, x(s)) ds

and the sum of the first two terms on the right-hand side will provide an upper bound
on (0, E]. Then in (2.7), z(t) must be carefully checked for positivity. A gain is made in
that the coefficient of u(t) in the integral will now be R(t−s) instead of (t−s)q−1/Γ(q)
and that can be most helpful.

Interconnections

Condition (2.9) seems severe, but it does not stand alone in this regard. Equations
(1.1) and (1.2) share solutions if and only if (1.3) holds. But we have shown in [6, (2.18)]
that (1.3) holds for the function f(t, x) = x2n+1, where n is a non-negative integer, if
and only if 2n/(2n+ 1) < q < 1. So, for (1.3) to hold for all q ∈ (0, 1), we must have
n = 0, in which case f(t, x) = x. Now, going back to (2.9), we see that the same is true
there too, namely, it holds for f(t, x) = x2n+1 if and only if n = 0. On the other hand,
looking ahead to Theorem 6.1 and (6.1) in the last section, we notice that there is
far more latitude for n in both (1.3) and (2.9) if we take f(t, x) = tr1x2n+1. Far more
important is the fact that we are working here only on the Riemann-Liouville problem
having that singularity at t = 0 in the forcing function. The difficulties mentioned
here vanish for the variety of problems considered in Section 5.
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3. BACK TO (1.2) AND A TRANSLATION

We have established that any solution of (1.2) for any x0 > 0 and λ ∈ (0, 1] has
a bound given by (2.10). Now, let us return to (1.2), change to λ = 1, assume there is
a solution on a short interval (0, 2T ], and translate to a completely equivalent equation
which will have a continuous forcing function, but the same kernel. We will be able to
show that the natural mapping defined by this equation will satisfy the conditions of
Schaefer’s theorem and still retain that bound of (2.10). From (1.2) we have

x(t+ T ) = λx0(t+ T )q−1 − 1
Γ(q)

t+T∫

0

(t+ T − s)q−1λf(s, x(s)) ds

= λx0(t+ T )q−1 − λ

Γ(q)

T∫

0

(t+ T − s)q−1f(s, x(s)) ds

− λ

Γ(q)

t+T∫

T

(t+ T − s)q−1f(s, x(s)) ds

= λx0(t+ T )q−1 − λ

Γ(q)

T∫

0

(t+ T − s)q−1f(s, x(s)) ds

− λ

Γ(q)

t∫

0

(t+ T − s− T )q−1f(s+ T, x(s+ T )) ds

= λ

[
x0(t+ T )q−1 − 1

Γ(q)

T∫

0

(t+ T − s)q−1f(s, x(s)) ds

− 1
Γ(q)

t∫

0

(t− s)q−1f(s+ T, x(s+ T )) ds
]
.

Now let
y(t) := x(t+ T ), t ≥ 0, (3.1)

to write this as

y(t) = λ

[
F (t)− 1

Γ(q)

t∫

0

(t− s)q−1f(s+ T, y(s)) ds
]
, (3.2)

where

F (t) := x0(t+ T )q−1 − 1
Γ(q)

T∫

0

(t+ T − s)q−1f(s, x(s)) ds. (3.3)
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Notice that if f(t, x) satisfies the conditions of Theorem 2.2, which includes (2.9)
on an interval (0, E], and if x(t) is a solution of (1.2) on (0, E], then the bounds for y(t)
on [0, E − T ] for a given T ∈ (0, E) will be the same as those given for x(t) in (2.10).

The function F that is defined above will play a large role in the work here. The
following theorem lists some of its properties.

Theorem 3.1. If x(t) is a solution of (1.2) on (0, 2T ] and if f(t, x(t)) is absolutely
integrable on (0, 2T ], then the function F : [0,∞)→ < defined by (3.3) is uniformly
continuous on [0,∞) and converges to zero as t→∞.

A proof of this can be readily patterned after one found in Theorem 4.2 in [6, p. 266]
where the kernel here is replaced with R(t− s). If the reader consults that reference,
note that we have not concluded here that F ∈ L1[0,∞). Now, that is the main
property which separates R(t− s) and (t− s)q−1 and if we follow through the proof of
Theorem 4.2 we see that the finite integral of R is used in exactly one place, namely
(4.13) in [6, p. 268], which is the part of the proof showing that F ∈ L1[0,∞). In any
case, we now leave (3.2) and begin with a new F , namely H below, which is continuous
by hypothesis and is the form for all of our examples in Section 5.

We call (3.2) a member of the standard form. But to indicate that it is only one of
many, we will designate the standard form by

x(t) = H(t)−
t∫

0

(t− s)q−1h(s, x(s)) ds, (3.4)

where H : [0,∞) → (0,∞) and h : [0,∞) × < → < are both continuous, while
h(t, x) > 0 if x > 0. Referring back to Schaefer’s theorem we will define a mapping
on a certain Banach space of continuous functions φ : [0, E]→ < with the supremum
norm so that for φ in the space then

(Pφ)(t) = H(t)−
t∫

0

(t− s)q−1h(s, φ(s)) ds. (3.5)

Our task now will be to show that the conditions of Schaefer’s theorem are satisfied.
With (3.2) and (3.4) formulated together here it is appropriate to offer a main

result concerning mappings of the type given in (3.5). A form of this was given in [10].

Theorem 3.2. Let E > 0 and S be a set of uniformly bounded and continuous
functions φ : [0, E] → <. Then the set QS of bounded continuous functions
ψ : [0, E]→ < defined by φ ∈ S implies that

ψ(t) = (Qφ)(t) =
t∫

0

(t− s)q−1φ(s) ds, t ∈ [0, E],

is equicontinuous.
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Proof. Let M denote a uniform bound for the set S, i.e., |φ(s)| ≤M for all s ∈ [0, E]
and φ ∈ S. Note that (Qφ)(0) = 0 for all φ ∈ S. Then, for 0 ≤ t1 ≤ t2 ≤ E and φ ∈ S,

|ψ(t1)− ψ(t2)| =
∣∣∣∣
t1∫

0

(t1 − s)q−1φ(s)ds−
t2∫

0

(t2 − s)q−1φ(s) ds
∣∣∣∣

≤
t1∫

0

|(t1 − s)q−1 − (t2 − s)q−1||φ(s)|ds+
t2∫

t1

(t2 − s)q−1|φ(s)| ds

≤M
{ t1∫

0

[(t1 − s)q−1 − (t2 − s)q−1] ds+
t2∫

t1

(t2 − s)q−1 ds

}

= M

[
tq1
q
− tq2
q

+ 2(t2 − t1)q
q

]
,

which goes to zero for |t1 − t2| → 0 independently of φ ∈ S.
This is the result which will show that the mapping in Schaefer’s theorem is

compact. It will map bounded sets into closed, bounded, equicontinuous sets on a finite
interval.

4. SCHAEFER’S THEOREM

Our equations for (i) and (ii) of Schaefer’s theorem come from

x(t) = H(t)−
t∫

0

(t− s)q−1h(s, x(s)) ds

and

(Pφ)(t) = H(t)−
t∫

0

(t− s)q−1h(s, φ(s)) ds.

We will see that equations of this general type always satisfy the continuity and
compactness conditions of Schaefer’s theorem on bounded intervals.
Notation.
(a) (B, ‖ · ‖), or just B, denotes the Banach space of bounded continuous functions

φ : [0,∞)→ < with the supremum norm.
(b) The closed L-ball in B is

ML := {φ ∈ B : ‖φ‖ ≤ L}. (4.1)

(c) For E > 0, BE denotes the Banach space of continuous functions φ : [0, E]→ <
with the supremum norm ‖ · ‖E .
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(d) The closed L-ball in BE is

ML
E := {φ ∈ BE : ‖φ‖E ≤ L}. (4.2)

While (1.2) led the way to the standard form (3.4) which satisfies all conditions of
Schaefer’s theorem except for the a priori bound, it is a counterpart of Theorem 2.2
which now leads us to that bound in all six examples to be considered in Section 5.
To obtain that counterpart, we introduce λ in (3.4) writing

x(t) = λ

[
H(t)−

t∫

0

(t− s)q−1h(s, x(s)) ds
]
. (3.4λ)

Theorem 4.1. Let H : [0,∞)→ (0,∞) and h : [0,∞)×< → < be continuous functions
where h(t, x) > 0 if x > 0. Suppose that for a given E > 0 there is a constant k such
that

h(t, x)
x

≤ k (4.3)

for 0 ≤ t ≤ E, 0 < x ≤ H(t). Moreover, suppose

H(t)−
t∫

0

R(t− s)H(s) ds > 0 for 0 ≤ t ≤ E, (4.4)

where R arises as in (2.4) with C(t) = λJtq−1 and J ≥ k. If there is a solution x(t)
of (3.4λ) on [0, E], then

0 < x(t) ≤ H(t)

for 0 ≤ t ≤ E.

Proof. If x(t) is a solution of (3.4λ) on [0, E], then it is either positive over the entire
interval [0, E] or over some subinterval [0, t1) ⊂ E since x(0) = λH(0) > 0. The
transformation of Section 2 applied to (3.4λ) and the application of the nonlinear
variation of parameters formula yield

x(t) = λ

{
H(t)−

t∫

0

R(t− s)H(s) ds
}

+
t∫

0

R(t− s)
[
x(s)− h(s, x(s))

J

]
ds, (4.5)

where R(t) denotes the resolvent for the kernel C(t) = λJtq−1. We see from (3.4λ)
and the positivity condition for h that x(t) ≤ λH(t) ≤ H(t) as long as x(t) > 0. This,
x(t) starting off positive, and (4.4) imply that x(t) can never become zero at a point in
[0, E] for that would imply that the second integral in (4.5) is negative at that point.
But because of (4.3) that is clearly not the case. Thus x(t) > 0 for all t ∈ [0, E].
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Theorem 4.2. Let
(i) 0 < λ ≤ 1, E be a positive constant,
(ii) h : [0,∞)×< → < and H : [0,∞)→ (0,∞) both be continuous.
If there is a continuous function b : [0,∞)→ (0,∞) so that any solution of x = λPx
satisfies

0 < x(t) ≤ b(t) for 0 ≤ t ≤ E,
then there is a φ ∈ BE with 0 < φ(t) ≤ b(t) and Pφ = φ. If these conditions hold for
every E > 0 and if solutions of (3.4) are unique, then there is a φ ∈ B solving (3.4)
on [0,∞) and it satisfies 0 < φ(t) ≤ b(t).
Corollary 4.3. If the conditions of Theorem 2.2 hold, then (3.2) has a positive
solution on any interval (0, T + E] for λ = 1. Moreover, if solutions of (3.2) are
unique, then the solution exists on (0,∞).

The proof of both this theorem and its corollary consists of proving the following
three lemmas and then applying Schaefer’s theorem.

Proof. First, with Lemmas 4.4 and 4.5, we show P maps BE into itself and that it is
continuous.

Lemma 4.4. If ψ ∈ BE, then (Pψ)(t) is a continuous function of t and hence
P : BE → BE.

This is an immediate consequence of Theorem 3.2. That is, φ(t) = h(t, ψ(t))
is continuous, resides in a bounded subset of BE , and by Theorem 3.2 it is in an
equicontinuous subset of BE .

The next lemma asserts that the assumption of continuity in Schaefer’s theorem
will always hold for (3.5).

Lemma 4.5. The mapping P : BE → BE is continuous.

Proof. Continuity of this mapping follows from the hypothesis that the function
h : [0,∞)×< → < is continuous and the convergence of

t∫

0

(t− s)q−1 ds = tq

q
.

Here are the details.
Choose any φ ∈ BE . Let m := 2‖φ‖E unless φ ≡ 0, in which case let m = 1. Now

let ε > 0 be given. We will prove P is continuous on BE by showing that a δ > 0 exists
such that ψ ∈ BE and ‖ψ − φ‖E < δ imply ‖Pψ − Pφ‖E < ε.

Since h is continuous on the closed, bounded set

S := {(t, x) : 0 ≤ t ≤ E,−m ≤ x ≤ m},

a δ ∈ (0,m/2) exists for the given ε > 0 such that

|h(t, x1)− h(t, x2)| < εq

2Eq
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if x1, x2 are a pair of numbers satisfying |x1| ≤ m/2 and |x1 − x2| < δ. Note that
(t, x2) ∈ S since

|x2| ≤ |x2 − x1|+ |x1| < δ + m

2 < m.

For ψ ∈ BE with ‖ψ − φ‖E < δ,

‖ψ‖E ≤ ‖ψ − φ‖E + ‖φ‖E < δ + m

2 < m.

From (3.5), we have

|(Pψ)(t)− (Pφ)(t)| ≤
t∫

0

(t− s)q−1|h(s, ψ(s))− h(s, φ(s))| ds

for t ∈ [0, E]. Since |φ(s)| ≤ m/2 and |ψ(s)− φ(s)| < δ for 0 ≤ s ≤ t, it follows that

|(Pφ)(t)− (Pψ)(t)| ≤ εq

2Eq

t∫

0

(t− s)q−1 ds = εq

2Eq ·
tq

q
≤ εq

2Eq ·
Eq

q
= ε

2

for t ∈ [0, E]. Therefore,
‖Pφ− Pψ‖E < ε.

The next lemma asserts that P is always a compact map on bounded intervals
and, hence, the first sentence of Schaefer’s theorem is satisfied.

Lemma 4.6. The mapping P maps every bounded subset of BE into a compact subset
of BE.

Proof. Let G be an arbitrary bounded subset of BE and find an L > 0 so that G ⊂ML
E .

By Theorem 3.2 the integral in P maps ML
E into an equicontinuous subset, say Z,

of BE . Adding the uniformly continuous function H to each element of −Z results
in an equicontinuous subset of BE . The closure of this last equicontinuous subset is
compact. This completes the proof.

To finish the proof of existence on [0, E], notice that the second sentence of
Theorem 4.2, as well as Theorem 2.2, asserts that there is an a priori bound on all
possible solutions of x = λPx. Conditions of Schaefer’s theorem are now satisfied so
there is a solution of (3.4) on any interval [0, E].

If solutions of (3.4) are unique we construct a sequence of solutions xn of (3.4)
each of which is defined on [0, n] with n = 1, 2, . . . . By the uniqueness, for each positive
integer p we see that xn+p coincides with xn on [0, n]. Now, obtain a sequence of
functions Xn on [0,∞) where Xn = xn on [0, n] and Xn(t) = xn(n) for t ≥ n. This
sequence converges uniformly on compact sets to a continuous function X(t) on [0,∞)
which solves (3.4) at any t ∈ [0,∞).

Uniqueness results can be cumbersome, as seen in [21, p. 91], but there is a very
simple one for (3.4).
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Theorem 4.7. Let h, H, and b be as in Theorem 4.2. Suppose that x1 and x2 are
two solutions of (3.4) on an interval [0, E] residing in the strip of functions

S := {x : 0 < x(t) ≤ b(t), 0 ≤ t ≤ E }.

If there are constants J > 0 and K < 1 such that

0 ≤ h(s, z(s))− h(s, w(s))
J(z(s)− w(s)) ≤ K (4.6)

whenever z, w ∈ S and z(s) 6= w(s), then x1 ≡ x2 on [0, E].
Proof. The idea is to introduce the constant J here in order to have the flexibility of
choosing its value so as to satisfy condition (4.6) for the given interval [0, E]. This is
accomplished with (4.5) (with λ = 1), which is the result of applying the transformation
of Section 2 to (3.4). Thus we begin with

x(t) = H(t)−
t∫

0

R(t− s)H(s) ds

+
t∫

0

R(t− s)
[
x(s)− h(s, x(s))

J

]
ds.

(4.7)

Note that since H is continuous, the Hobson-Tonelli conditions are satisfied; so this
equation is completely equivalent to (3.4).

Suppose that x1 and x2 are distinct solutions of (3.4) – and so of (4.7) as just
noted. Then

|x1(t)− x2(t)|

≤
t∫

0

R(t− s)
∣∣∣∣x1(s)− x2(s)− h(s, x1(s))− h(s, x2(s))

J

∣∣∣∣ ds.
(4.8)

For those s ∈ [0, E] with x1(s) = x2(s),
∣∣∣∣x1(s)− x2(s)− h(s, x1(s))− h(s, x2(s))

J

∣∣∣∣ = 0,

which is less than ‖x1 − x2‖E = sups∈[0,E] |x1(s)− x2(s)| > 0.
Now consider those s ∈ [0, E] with x1(s) 6= x2(s). Then condition (4.6) implies

that
∣∣∣∣x1(s)− x2(s)− h(s, x1(s))− h(s, x2(s))

J

∣∣∣∣

= |x1(s)− x2(s)|
∣∣∣∣1−

h(s, x1(s))− h(s, x2(s))
J(x1(s)− x2(s))

∣∣∣∣
≤ |x1(s)− x2(s)| ≤ ‖x1 − x2‖E .
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Consequently, it follows from (4.8) that

|x1(t)− x2(t)| ≤
t∫

0

R(t− s)‖x1 − x2‖E ds ≤ ‖x1 − x2‖E
E∫

0

R(s) ds.

However, this implies

‖x1 − x2‖E ≤ ‖x1 − x2‖E
E∫

0

R(s) ds,

a contradiction since
E∫
0
R(s) ds < 1. Therefore, x1 ≡ x2.

5. THE TRANSFORMATION AND SCHAEFER’S THEOREM

A main purpose of these examples is to illustrate how counterparts of (1.2) yield an
upper bound on all possible solutions, while the transformation of Section 2 producing
a counterpart of (3.2) yields an integrand with sign changed which immediately
supplies the lower bound on all possible solutions. In particular, once the upper bound
is established then there is an upper bound for x and we then use J to secure that
lower bound. It is most rewarding to see how this is done in Example 5.4; we could not
have made x dominate cx4/J had it not been for the upper bound established for x.

One of the pleasant properties of both of the theorems of Section 4 is that the
intervals [0, E] are arbitrarily large. This is a wonderful property promoted by Schaefer’s
theorem. So often other methods require that we get a solution on a short interval
and then extend it over and over again to get a solution on a desired interval. Miller
[21, pp. 93–98] describes the process.

We are going to present some classical examples in which that is the traditional
case, but the transformation and Schaefer’s theorem give simple and clean results.

Example 5.1. In the study of turbulence, Consiglio [13] (see also Miller [21, p. 72])
considered the scalar equation

x(t) = λ

L

(
1−

t∫

0

(t− s)−1/2x2(s) ds
)

(5.1)

when λ = 1 and L is any positive constant.

Theorem 5.2. A solution x(t) of (5.1) when λ = 1 exists on every interval [0, E]
and it satisfies 0 < x(t) ≤ 1/L.

Proof. Consider (5.1) for any fixed λ ∈ (0, 1].
1. First note that if a solution of (5.1) exists, then it is bounded above by 1/L.
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2. But notice in (5.1) that nothing appears to be stopping x from becoming
negative. To counter that possibility, apply the transformation of Section 2 to (5.1).
Observing that (5.1) can be obtained from (3.4λ) by letting H(t) = 1/L, q = 1/2,
and h(t, x) = x2/L, we see that this work was actually done in Section 4 when
we transformed (3.4λ) into (4.5). Using the above H and h in (4.5), we obtain the
transformed equation

x(t) = λ

L

(
1−

t∫

0

R(s) ds
)

+
t∫

0

R(t− s)
(
x(s)− x2(s)

JL

)
ds,

where R(t) denotes the resolvent for the kernel C(t) = λJt−1/2.
3. Let J = 2/L2. Then, for 0 < x(s) ≤ 1/L, we have

x(s)− x2(s)
JL

= x(s)
[
1− x(s)

2/L

]
> 0,

since
x(s)
2/L ≤

1/L
2/L = 1/2.

It follows that should a solution x(t) of (5.1) exist, then the right-hand side of the
above transformed equation must be positive on some interval to the right of t = 0 as
x(0) = λ/L > 0. Consequently, we can argue as in the proofs of Theorems 2.2 and 4.1
that

0 < x(t) ≤ 1
L

for t ≥ 0 so long as this solution exists. In other words, we have obtained an a priori
bound on possible solutions of (5.1).
This bound also follows from Theorem 4.1 since h(t, x) = x2/L satisfies the positivity
condition and (4.3) is satisfied on any interval [0, E] with k = 1/L2. ClearlyH(t) = 1/L
satisfies condition (4.4).

We are now in a position to apply Schaefer’s fixed point theorem via Theorem 4.2.
Since the conditions of this theorem are satisfied with the functions H(t) = 1/L,
h(t, x) = x2/L, and b(t) = 1/L, it follows that (5.1) with λ = 1 has a solution in the
strip of functions {x(t) : 0 < x(t) ≤ L, t ∈ [0, E]} for any E > 0.

We will now show that solutions are unique and that will then allow us to say that
there is a solution on [0,∞) satisfying 0 < x(t) ≤ 1/L.

Theorem 5.3. There is at most one solution of (5.1) when λ = 1 on any interval
[0, E].
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Proof. Let λ = 1 in (5.1). By way of contradiction, suppose that there are distinct
solutions x1 and x2 of (5.1) on an interval [0, E]. Then from the transformed equation
in the previous proof, we obtain

|x1(t)− x2(t)| =
∣∣∣∣

t∫

0

R(t− s)
(
x1(s)− x2

1(s)
JL

− x2(s) + x2
2(s)
JL

)
ds

∣∣∣∣

≤
t∫

0

R(t− s)
∣∣∣∣x1(s)− x2(s)− x2

1(s)− x2
2(s)

JL

∣∣∣∣ ds,

where
∣∣∣∣x1(s)− x2(s)− x2

1(s)− x2
2(s)

JL

∣∣∣∣

=
∣∣∣∣
(
x1(s)− x2(s)

)(
1− x1(s) + x2(s)

JL

)∣∣∣∣

= |x1(s)− x2(s)|
[
1− x1(s) + x2(s)

JL

]
≤ |x1(s)− x2(s)|

if J is chosen large enough so that

x1(s) + x2(s)
JL

< 1.

This yields

|x1(t)− x2(t)| ≤
t∫

0

R(t− s)|x1(s)− x2(s)| ds

for 0 ≤ t ≤ E. Now the supremum of the left side is achieved at some t1 ∈ [0, E] so
that

‖x1 − x2‖E ≤ ‖x1 − x2‖E
E∫

0

R(s) ds,

a contradiction.

Theorem 5.3 also follows from Theorem 4.7. Since a solution x(t) of (5.1) must satisfy
0 < x(t) ≤ 1/L, the reader can check that condition (4.6) is satisfied with J = 4/L2

and K = 1/2.

Example 5.4. This example is adapted from a heat transfer problem studied by
Miller [21, pp. 207–209] which we write as

x(t) = −c
t∫

0

(t− s)−1/2(x4(s)− r4) ds, (5.2)
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where c and r are positive constants. It will illustrate further interplay between the
two forms analogous to (1.2) and (2.7). This problem is different than Example 5.1
because x(0) = 0 and it seems unclear if x(t) increases or decreases. It will require the
counterpart of (2.7) to show that x(t) increases. Once we get that information, then
we will go back to (5.2) to get the upper bound. This upper bound will then restrict x
and enable us to use J to make x dominate cx4/J , thereby obtaining a lower bound
from the counterpart of (3.2).

Inserting the constant λ ∈ (0, 1] in (5.2) and integrating the second term, we obtain

x(t) = λ

[
2cr4√t− c

t∫

0

(t− s)−1/2x4(s) ds
]
. (5.3)

In the notation of (3.4λ), H(t) = 2cr4√t and h(s, x(s)) = cx4(s). Accordingly, we
obtain from (4.5) the transformed equation

x(t) =λ
[
2cr4√t− 2cr4

t∫

0

R(t− s)√s ds
]

+
t∫

0

R(t− s)
[
x(s)− cx4(s)

J

]
ds, (5.4)

where R(t) is the resolvent for the kernel C(t) = λJt−1/2. As
√
t is increasing and

∞∫
0
R(s) ds = 1, we see that

2cr4
[√

t−
t∫

0

R(t− s)√s ds
]
> 0

for t > 0.

Theorem 5.5. Equation (5.2) has a unique solution on [0,∞) and for any E > 0 the
solution on [0, E] satisfies 0 ≤ x(t) ≤ 2cr4√E. The solution is positive on (0,∞).

Proof.
1. Suppose there is a solution x(t) of (5.2). Recall by a solution we mean a continuous

function satisfying the equation. Hence, as x(0) = 0 and r > 0, x4(s)− r4 < 0 on an
interval (0, T ] for some T > 0. It follows that the right-hand side of (5.2) is positive
on this interval.

2. Since the solution x(t) is initially positive, we see from (5.3) that it is bounded
above by 2cr4√t so long as x(t) > 0.

3. Now let [0, E] be given and take J sufficiently large so that x > cx4/J for
0 < x ≤ 2cr4√E. This implies that the integrand in the last term of (5.4) is positive
so long as x(t) is positive. Thus, by adapting the proof of Theorem 4.1 to the interval
(0, E], we see that x(t) is always positive and 0 < x(t) ≤ 2cr4√t for 0 < t ≤ E. Hence,
0 ≤ x(t) ≤ 2cr4√t is an a priori bound for any solution of (5.2) on [0, E].

4. Notice that the proof of Theorem 4.2 remains valid if the strict inequalities at
t = 0 are replaced with equalities. Consequently, with b(t) = 2cr4√t, we conclude
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from the theorem that there is a solution x(t) of (5.2) on every interval [0, E] and that
0 ≤ x(t) ≤ 2cr4√E. Uniqueness of this solution follows from the proof of Theorem 4.7
with h(t, x) = cx4 (cf. (5.4)).

Example 5.6. Equation (1.1) inverts as (1.2) and it is both a surprise and a source of
frustration that the initial condition does not yield x(0) = x0, as we expect throughout
the entire theory of differential equations.

In order to rectify this, Caputo offered a different definition of the fractional
derivative so that his equation

cDqx(t) = −h(t, x(t)), x(0) ∈ <, 0 < q < 1, (5.5)

inverts for all continuous h as

x(t) = x(0)− 1
Γ(q)

t∫

0

(t− s)q−1h(s, x(s)) ds, (5.6)

where Caputo’s fractional derivative of order q is defined by
cDqx(t) := Dq[x− x(0)](t).

Recall from Section 1 that Dq denotes the Riemann-Liouville fractional differential
operator of order q; thus

cDqx(t) = 1
Γ(1− q)

d

dt

t∫

0

(t− s)−q[x(s)− x(0)] ds.

See, for example, Diethelm [14, pp. 50, 86].
It turns out that much is gained and much is lost by this change but today in

applied mathematics it is difficult to say which of (1.1) and (5.5) is more useful
in mathematical models. The transformation of Section 2 was actually developed for
(5.6) and details are found in [9].

As we mentioned earlier in Section 1, it is interesting to note that in the two-step
process the arguments are independent of λ. The reader is invited to insert the constant
λ in both (5.6) and in

x(t) = x(0)
[
1−

t∫

0

R(s) ds
]

+
t∫

0

R(t− s)
[
x(s)− h(s, x(s))

J

]
ds, (5.7)

which is the result of applying the transformation of Section 2 to (5.6) and then using
the nonlinear variation of parameters formula. Here R(t) denotes the resolvent for the
kernel C(t) = Jtq−1/Γ(q).
Theorem 5.7. Suppose there are positive constants x(0), J , K, and E such that the
relation

0 < h(t, x)
Jx

≤ K < 1
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holds for 0 < x ≤ x(0) and 0 ≤ t ≤ E. Then (5.6) has a positive solution on [0, E].
If the relation holds for all E > 0 and if each solution on [0, E] is unique, then there
is a positive solution on [0,∞) and it resides in the strip 0 < x ≤ x(0).
Proof. Should a solution x(t) of equation (5.6) exist, then it follows from the relation
that x(t) is bounded above by x(0) so long as it remains positive. Also, we see from
the relation that

x(s)− h(s, x(s))
J

= x(s)
[
1− h(s, x(s))

Jx(s)

]
> 0

when 0 < x(s) ≤ x(0). Thus, we can argue as in Example 5.1 that if x(t) is a solution
of (5.6), then 0 < x(t) ≤ x(0) throughout the interval of its existence.

The remainder of the proof follows the same line of reasoning as in Example 5.1.

Example 5.8. One of the much sought properties in applied mathematics is the exis-
tence of a positive periodic solution. It is known ([12,16]) that neither Riemann-Liouville
nor Caputo equations can have a periodic solution, but asymptotically periodic solu-
tions occur in a natural way. Consider the equation

cDqx(t) = −a(t)x(t) + p(t), 0 < q < 1, x(0) ∈ < (5.8)
with a, p : < → < both continuous and suppose there is a T > 0 with a(t+ T ) = a(t)
and p(t+ T ) = p(t).
Theorem 5.9. Let the conditions with (5.8) hold. Additionally, suppose that a and
p are positive. If x(0) > 0, then (5.8) has a unique solution x and it is positive.
Furthermore, there is a T -periodic function g : < → < such that |x(t)− g(t)| → 0 as
t→∞.
Proof. Burton and Zhang [12, Thm. 6.1] show that for every x(0) ∈ < a unique solution
x of (5.8) exists and that there is a T -periodic function g with |x(t) − g(t)| → 0 as
t→∞. So all we must show is that x(t) is positive when x(0) > 0. Inverting equation
(5.8), we obtain

x(t) = x(0) + 1
Γ(q)

t∫

0

(t− s)q−1p(s) ds− 1
Γ(q)

t∫

0

(t− s)q−1a(s)x(s) ds. (5.9)

From (5.9) we see that any solution x(t) is bounded above by the continuous function

x(0) + 1
Γ(q)

t∫

0

(t− s)q−1p(s) ds

so long as it remains positive (recall x(0) > 0 by hypothesis).
From (5.6) and (5.7) we readily see that the result of applying the transformation

developed in Section 2 to (5.9) is

x(t) = x(0)
[
1−

t∫

0

R(s) ds
]

+
t∫

0

R(t− s) p(s)
J

ds+
t∫

0

R(t− s)
[
x(s)− a(s)

J
x(s)

]
ds.
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So if we choose J > ‖a‖, then the last integral in this display remains positive for
x > 0. Hence, x(t) is always positive.

We illustrate this theorem by letting q = 1/2, x(0) = 1, a(t) ≡ 1, and p(t) =
1 + 0.5 sin(4t) in (5.8). For these values and functions, we find in [4, (7.8)] that the
solution of (5.8) is given by

x(t) = Eq(−tq)x(0) + q

t∫

0

p(t− s)sq−1E′q(−sq) ds,

where Eq denotes the Mittag-Leffler function of order q = 1/2 and E′q its derivative.
Figure 1 shows the graph of this solution, which was drawn with the computer algebra
system Maple. Similar graphs can be drawn using other values of q ∈ (0, 1).

Fig. 1. A solution of (5.8)

Example 5.10. Logistic type problems are very common in applied mathematics.
The classical version is an ordinary differential equation

x′ = ax− bx2

with a and b positive constants. There are two constant solutions: x = 0, the empty
population, and x = a/b, the so-called carrying capacity of the medium. A population
with x(0) > a/b decreases and approaches a/b, while a population with 0 < x(0) < a/b
increases and approaches a/b.

Recently several authors have studied a logistic equation of Caputo type. All of those
results involve some kind of special functions and we think of them as quantitative. Thus,
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we offer a qualitative result by means of Schaefer’s theorem as both a companion and
a contrast. Khader and Babatin [17] study logistic equations as fractional differential
equations of Caputo type obtaining approximate solutions using Laguerre polynomials.
El-Sayed et al. [15] use series to obtain several different properties. West [28] offers an
exact solution, arousing some controversy in Area et al. [3].

Here we consider the following logistic equation of Caputo type:
cDqx(t) = ax(t)− bx2(t), 0 < q < 1, x(0) > 0, (5.10)

where a > 0 and b > 0. This inverts as

x(t) = x(0) + 1
Γ(q)

t∫

0

(t− s)q−1[ax(s)− bx2(s)] ds. (5.11)

Observe that the constant solution x(t) ≡ x(0) with x(0) = a/b is a solution of (5.10)
and (5.11), just as it is of the classical logistic equation. Our goal is to show that there
is a unique solution corresponding to every initial value x(0) > a/b and that it remains
above x = a/b for all t ≥ 0. That is, a solution starting above the carrying capacity
a/b will never drop below that value. If (5.10) were an ordinary differential equation,
then uniqueness would tell us that the solution starting above the carrying capacity
would never cross it. But the same can not be said for a general integral equation; so
the conclusion of the next theorem does not seem obvious.

Theorem 5.11. If x(0) > a/b, then there exists a unique solution x(t) of (5.10) and
a

b
< x(t) ≤ x(0).

for all t ≥ 0.

Proof. Assume x(0) > a/b. Expressing (5.11) in terms of

w(t) := x(t)− a

b
,

we obtain

w(t) + a

b
= x(0) + 1

Γ(q)

t∫

0

(t− s)q−1
[
a
(
w(s) + a

b

)
− b

(
w(s) + a

b

)2
]
ds,

which simplifies to

w(t) = x(0)− a

b
− 1

Γ(q)

t∫

0

(t− s)q−1[aw(s) + bw2(s)] ds. (5.12)

Since a, b > 0 and x(0) > a/b, it is clear that w(t) ≤ x(0)− a/b so long as w(t) > 0.
In other words, x(t) ≤ x(0) so long as x(t)− a/b > 0.
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Inserting a constant λ ∈ (0, 1] in (5.12) and then applying the transformation of
Section 2, we obtain

w(t) = λ
[
x(0)− a

b

]

1−

t∫

0

R(s) ds




+
t∫

0

R(t− s)
[
w(s)− aw(s) + bw2(s)

J

]
ds.

(5.13)

Now suppose that w(t) is a solution of (5.13) on an interval [0, E]. Choose J large
enough so that the integrand of the second term is positive on [0, E]. As a result, the
right-hand side is positive on [0, E]. And so the solution w(t) is positive throughout
[0, E].

Therefore the above work shows that any solution w(t) on an interval [0, E] must
lie in the strip of functions that are bounded above by x(0)− a/b and strictly below
by 0. Thus we have obtained an a priori bound for any solution on [0, E]. Schaefer’s
theorem or a variant of Theorem 4.2 leads to the conclusion that (5.13) has a solution
on [0, E]. Furthermore the solution is unique because (4.6) holds in the strip. Finally,
following previous arguments we conclude that (5.10) has a unique solution x(t) on
[0,∞) and it resides in the strip bounded above by x(0) and strictly below by a/b.

We are also interested in the existence and behavior of solutions when the initial
value x(0) is located in the strip 0 < x < a/b. Our analysis begins by setting J = a in
(5.13). Then we have

w(t) = λ
[
x(0)− a

b

]

1−

t∫

0

R(s) ds


− b

a

t∫

0

R(t− s)w2(s) ds.

Since x(0) < a/b, we see from the right-hand side that if this equation has a solution,
then w(t) < 0 throughout its interval of existence. In other words, if a solution x(t) of
(5.11) with a positive initial value x(0) < a/b exists, then x(t) < a/b. Consequently,
with (5.11) rewritten as

x(t) = x(0) + 1
Γ(q)

t∫

0

(t− s)q−1bx(s)
[a
b
− x(s)

]
ds,

we can see that this implies x(t) > 0 for as long as this solution exists.
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Incidentally, we have once again obtained a strip in which solutions must reside
should they exist. Consequently, we can now establish existence as in previous examples
with Schaefer’s theorem and thereby conclude that corresponding to an initial value
x(0) ∈ (0, a/b) there is a solution on [0,∞) residing in that strip.
Example 5.12. In classic papers, Mann and Wolf [20], Padmavally [24], and Roberts
and Mann [26] studied the temperature u(x, t) in a semi-infinite rod by means of the
integral equation

u(0, t) = 1
π1/2

t∫

0

(t− s)−1/2G(u(0, s)) ds, (5.14)

where G(u) is continuous and strictly decreasing with G(1) = 0. Miller’s work in
Example 5.4 was related to it, although he was seeking conditions for the resolvent
kernel.
Theorem 5.13. Let v(y) := −G(y + 1) and suppose there is a J > 0 so that for
−1 ≤ y < 0 we have

y − v(y)
J
≤ 0. (5.15)

Then for each E > 0 there is a solution of (5.14) on [0, E] and

0 ≤ u(0, t) < 1

for all t ∈ [0, E].
Proof. We change notation to put (5.14) into the form of this paper. Let u(0, t) := x(t)
and y(t) := x(t)− 1 so that for λ = 1 we have

y(t) = λ

[
− 1 + 1√

π

t∫

0

(t− s)−1/2G(y(s) + 1) ds
]
.

Then from v(y) = −G(y+1) we see that v(0) = 0, v(y) is strictly increasing, yv(y) > 0
for y 6= 0, and

y(t) = λ

[
− 1− 1√

π

t∫

0

(t− s)−1/2v(y(s)) ds
]
.

Notice that y(0) = −λ, while the integrand is negative so long as y(s) < 0. Hence,
y = −λ is a lower bound of any possible solution so long as it remains negative. The
transformation of Section 2 yields

y(t) = −λ


1−

t∫

0

R(s) ds


+

t∫

0

R(t− s)
[
y(s)− v(y(s))

J

]
ds.

From (5.15) it is now clear that y(t) does not have a zero because 1−
t∫

0
R(s) ds > 0

and the integrand is always negative when y(s) < 0.
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All of this establishes that if there is a solution on any interval [0, E] then

−λ ≤ y(t) < 0.

This means that −λ ≤ u(0, t)− 1 < 0; so 0 ≤ u(0, t) < 1 for all t ∈ [0, E]. This is the
a priori bound needed in Schaefer’s theorem.

6. APPENDIX

We have assumed that there is a solution of (1.2) on a short interval and that is a
cornerstone of one of our main results in this paper, namely Theorem 3.1. We have
referred to several papers offering existence theorems. Here is one which can be found
in [8, Thm. 3.1].

Theorem 6.1. Let q ∈ (0, 1) and x0 ∈ < with x0 6= 0. Let r1 > −1 and r2 ≥ 0 be
constants that satisfy the inequality

r1 − r2 + q (r2 + 1) > 0. (6.1)

Let f : (0,∞) × < → < be continuous. Suppose there are nonnegative constants K1
and K2 such that

|f(t, x)| ≤ K1 +K2 t
r1 |x|r2 (6.2)

for x ∈ < and 0 < t < T0, where T0 ∈ (0,∞]. Then for some T ∈ (0, T0) there is a
continuous function x : (0, T ]→ < that satisfies the integral equation

x(t) = x0tq−1 − 1
Γ(q)

t∫

0

(t− s)q−1f(s, x(s)) ds (6.3)

on (0, T ]. Furthermore, |x(t)| ≤ 2|x0|tq−1 for t ∈ (0, T ].

The next result is found in [6] and is offered here for reference as an exact statement
of existence.

Theorem 6.2. Let f : [0, T ]×< → < be continuous and satisfy the Lipschitz condition

|f(t, x)− f(t, y)| ≤ K2|x− y|

for some K2 > 0. Then, for each q ∈ (0, 1), there is a T0 ∈ (0, T ] such that (1.2) has
a unique continuous solution φ on (0, T0] with

lim
t→0+

t1−q
t∫

0

(t− s)q−1f(s, φ(s)) ds = 0, lim
t→0+

t1−qφ(t) = x0.

Finally, both φ(t) and f(t, φ(t)) are absolutely integrable.
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