PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling cognitive functionalities of prosthetic arm using conceptual spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conceptual space framework is used for representing knowledge in cognitive systems. In this paper, we have adapted conceptual space framework for prosthetic arm considering its cognitive abilities such as receiving signals, recognizing and decoding the signal and responding with the corresponding action in order to develop a conceptual space of the prosthetic arm. Cognitive functionalities such as learning, memorizing and distinguishing configurations of prosthetic arm are achieved via its conceptual space. To our knowledge, this work is the first attempt to adapt the conceptual spaces to model cognitive functionalities of prosthetic arm. Adding to this, we have made use of different notion of concept that reflects the topological structure in concepts. To model the actions of the prosthetic arm functionalities, we have made use of force patterns to represent action. Similarly, to model the distinguishing ability, we make use of the relationship between the attributes conveyed by adapted different notion of concept.
Twórcy
  • School of Information Technology & Engineering, Vellore Institute of Technology, Vellore
  • School of Information Technology & Engineering, Vellore Institute of Technology, Vellore
Bibliografia
  • [1] M. C. Amoretti, M. Frixione, A. Lieto, and G. Adamo. “Ontologies, Mental Disorders and Prototypes”. In: D. Berkich and M. V. d’Alfonso, eds., On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence: Themes from IACAP 2016, Philosophical Studies Series, 189–204. Springer International Publishing, Cham, 2019 DOI: 10.1007/978-3-030-01800-9_10.
  • [2] R. A. Andersen, B. Pesaran, P. Mitra, D. Meeker, K. V. Shenoy, S. Cao, and J. W. Burdick, “Cognitive state machine for prosthetic systems”, patent no. 6952687, 2005.
  • [3] M. Asano, I. Basieva, A. Khrennikov, M. Ohya, Y. Tanaka, and I. Yamato, “Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology”, Foundations of Physics, vol. 45, no. 10, 2015, 1362–1378 DOI: 10.1007/s10701‑015‑9929‑y.
  • [4] M. Atzori, A. Gijsberts, S. Heynen, A.‑G. M. Hager, O. Deriaz, P. van der Smagt, C. Castellini, B. Caputo, and H. Müller, “Building the Ninapro database: A resource for the biorobotics community”. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, 1258–1265 DOI: 10.1109/BioRob.2012.6290287.
  • [5] M. Atzori and H. Müller, “The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics”. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, 7151–7154 DOI: 10.1109/EMBC.2015.7320041.
  • [6] A. Augello, S. Gaglio, G. Oliveri, and G. Pilato, “An algebra for the manipulation of conceptual spaces in cognitive agents”, Biologically Inspired Cognitive Architectures, vol. 6, 2013, 23–29 DOI: 10.1016/j.bica.2013.07.004.
  • [7] R. Belohlavek, “Introduction to Formal Concept Analysis”, 2008.
  • [8] T. R. Besold and K.‑U. Kühnberger, “Towards integrated neural-symbolic systems for humanlevel AI: Two research programs helping to bridge the gaps”, Biologically Inspired Cognitive Architectures, vol. 14, 2015, 97–110 DOI: 10.1016/j.bica.2015.09.003.
  • [9] H. Burnett and O. Bonami, “A Conceptual Spaces Model of Socially Motivated Language Change”, Proceedings of the Society for Computation in Linguistics, vol. 2, no. 1, 2019, 135–145 DOI: 10.7275/5vmp‑cs05.
  • [10] S. M. de Paula and R. R. Gudwin, “Evolving conceptual spaces for symbol grounding in language games”, Biologically Inspired Cognitive Architectures, vol. 14, 2015, 73–85 DOI: 10.1016/j.bica.2015.09.006.
  • [11] B. Fan, E. C. C. Tsang, W. Xu, D. Chen, and W. Li, “Attribute‑oriented cognitive concept learning strategy: a multi‑level method”, International Journal of Machine Learning and Cybernetics, vol. 10, no. 9, 2019, 2421–2437 DOI: 10.1007/s13042‑018‑0879‑5.
  • [12] W. Fierz, “Conceptual Spaces of the Immune System”, Frontiers in Immunology, vol. 7, 2016 DOI: 10.3389/fimmu.2016.00551.
  • [13] P. Gärdenfors, “Reasoning in conceptual spaces”, Reasoning: Studies of Human Inference and Its Foundations, 2008, 302–320.
  • [14] P. Gärdenfors, Conceptual spaces: the geometry of thought, MIT Press: Cambridge, Mass, 2000.
  • [15] P. Gärdenfors. “Representing Actions and functional properties in conceptual spaces”. In: Body,language and mind, vol. 1, 167–196, 2007.
  • [16] S. Schockaert and S. Li, “Reasoning about Betweenness and RCC8 Constraints in Qualitative Conceptual Spaces”, 2018, 1963–1969.
  • [17] E. E. Hayslett‑Ubell, “Upper limb prosthetics”, Wheaton Journal of Neuroscience Senior Seminar Research, vol. 1, 2016.
  • [18] H. Hoffmann, J. Choe, and C. M. Thibeault. “Device and method to automatically tune the nerve stimulation pattern of a sensory‑feedback capable prosthesis”, patent no. 10166394, 2019.
  • [19] C. Huang, J. Li, C. Mei, and W.‑Z. Wu, “Three‑way concept learning based on cognitive operators: An information fusion viewpoint”, International Journal of Approximate Reasoning, vol. 83, 2017, 218–242 DOI: 10.1016/j.ijar.2017.01.009.
  • [20] C. Li, J. Li, and M. He, “Concept lattice compression in incomplete contexts based on K‑medoids clustering”, International Journal of Machine Learning and Cybernetics, vol. 7, no. 4, 2016, 539–552 DOI: 10.1007/s13042‑014‑0288‑3.
  • [21] J. Li, C. Huang, J. Qi, Y. Qian, and W. Liu, “Three‑-way cognitive concept learning via multi‑granularity”, Information Sciences, vol. 378, 2017, 244–263 DOI: 10.1016/j.ins.2016.04.051.
  • [22] A. Lieto, A. Chella, and M. Frixione, “Conceptual Spaces for Cognitive Architectures: A lingua franca for different levels of representation”, Biologically Inspired Cognitive Architectures, vol. 19, 2017, 1–9 DOI: 10.1016/j.bica.2016.10.005.
  • [23] B. Markman and D. Gentner, “Commonalities and differences in similarity comparisons”, Memory & Cognition, vol. 24, no. 2, 1996, 235–249 DOI: 10.3758/BF03200884.
  • [24] G. Masterton, F. Zenker, and P. Gärdenfors, “Using conceptual spaces to exhibit conceptual continuity through scientific theory change”, European Journal for Philosophy of Science, vol. 7, no. 1,2017, 127–150, 10.1007/s13194‑016‑0149‑x.
  • [25] N. Masuyama, C. K. Loo, and N. Kubota, “Quantum‑Inspired Bidirectional Associative Memory for Human–Robot Communication”, International Journal of Humanoid Robotics, vol. 11, no. 02, 2014, 1450006 DOI: 10.1142/S0219843614500066.
  • [26] J. Niu, C. Huang, J. Li, and M. Fan, “Parallel computing techniques for concept‑cognitive learning based on granular computing”, International Journal of Machine Learning and Cybernetics, vol. 9, no. 11, 2018, 1785–1805 DOI: 10.1007/s13042‑018‑0783‑z.
  • [27] Norton, K., “A brief History of Prosthetics”, In-Motion, vol. 17, no. 7, 2007, 1–3 DOI: 10.1161/01.CIR.0000035036.22612.2B.
  • [28] Ch. Aswani Kumar, M. S. Ishwarya, and C. K. Loo, “Formal concept analysis approach to cognitive functionalities of bidirectional associative memory”, Biologically Inspired Cognitive Architectures, vol. 12, 2015, 20–33 DOI: 10.1016/j.bica.2015.04.003.
  • [29] R. Shivhare, A. K. Cherukuri, and J. Li, “Establishment of Cognitive Relations Based on Cognitive Informatics”, Cognitive Computation, vol. 9, no. 5, 2017, 721–729 DOI: 10.1007/s12559‑017‑9498‑9.
  • [30] A. J. Thurston, “Paré and Prosthetics: The Early History of Artificial Limbs”, ANZ Journal of Surgery,vol. 77, no. 12, 2007, 1114–1119 DOI: 10.1111/j.1445‑2197.2007.04330.x.
  • [31] R. Shivhare and A. K. Cherukuri, “Three‑way conceptual approach for cognitive memory functionalities”, International Journal of Machine Learning and Cybernetics, vol. 8, no. 1, 2017, 21–34 DOI: 10.1007/s13042‑016‑0593‑0.
  • [32] M. S. Ishwarya and C. Aswani Kumar, “Quantum Inspired High Dimensional Conceptual Space as KID Model for Elderly Assistance”. In: A. Abraham, A. K. Cherukuri, P. Melin, and N. Gandhi, eds., Intelligent Systems Design and Applications, 2020, 98–107 DOI: 10.1007/978‑3‑030‑16660‑1_10.
  • [33] A. Tversky, “Features of similarity”, Psychological Review, vol. 84, no. 4, 1977, 327–352 DOI: 10.1037/0033‑295X.84.4.327.
  • [34] S. Vosniadou and A. Ortony, eds., Similarity and Analogical Reasoning, Cambridge University Press: Cambridge, 1989.
  • [35] H. Wang and C. Schmid, “Action Recognition with Improved Trajectories”. In: 2013 IEEEInternational Conference on Computer Vision, 2013, 3551–3558 DOI: 10.1109/ICCV.2013.441.
  • [36] L. Wang and X. Liu, “A new model of evaluating concept similarity”, Knowledge‑Based Systems, vol. 21, no. 8, 2008, 842–846 DOI: 10.1016/j.knosys.2008.03.042.
  • [37] K. X. S. de Souza and J. Davis, “Aligning Ontologies and Evaluating Concept Similarities”. In: R. Meersman and Z. Tari, eds., On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, Berlin, Heidelberg, 2004, 1012–1029 DOI: 10.1007/978‑3‑540‑30469‑2_12.
  • [38] W. Xu, J. Pang, and S. Luo, “A novel cognitive system model and approach to transformation of information granules”, International Journal of Approximate Reasoning, vol. 55, no. 3, 2014, 853–866 DOI: 10.1016/j.ijar.2013.10.002.
  • [39] F. Zenker and P. Gärdenfors, eds., Applications of Conceptual Spaces: The Case for Geometric Knowledge Representation, Synthese Library, Springer International Publishing, 2015 DOI: 10.1007/978‑3‑319‑15021‑5.
  • [40] Y. Zhao, J. Li, W. Liu, and W. Xu, “Cognitive concept learning from incomplete information”, International Journal of Machine Learning and Cybernetics, vol. 8, no. 1, 2017, 159–170 DOI: 10.1007/s13042‑016‑0553‑8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8516641-d16a-4d1b-b1bf-f5dfe42f42a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.