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Abstract. Over the past 25 years highly successful methods for geometry theorem
proving have been developed. We will use elementary and understandable examples
to show the nature of the techniques for verification of geometric constructions made
with interactive geometry environment and for proving geometric statements. In ad-
dition to some informations about the WinGCLC software with specific language, we
look at the system GeoThms that integrates Automatic Theorem Provers, Dynamic
Geometry Tools and a database. The abovementioned system provides an environ-
ment suitable for new ways of studying and teaching geometry at different levels.

1. Introduction

Dynamic geometry software (DGS) is the most widely used software for mathe-
matics in education. DGS allows the user to create complex geometric con-
structions step by step using free objects such as free points, construct new
objects depending on the existing ones (for instance, the line passing through
two distinct points) and then move the starting points to explore how the
whole construction changes. The corresponding figure is updated in real time.
There exist a large number of free and commercial software! (e.g. Baghera,
Cabri, Cinderella, Dr. Geo, Eukleides, WinGCLC, GeoGebra, Geometer’s
Sketchpad, Geometrix, Geometry Expert (GEX), Geometry Explorer, Géo-
plan, GeoNext, GeoProof, KGeo, KIG, Non-Euclid, OpenEuclide, WinGeom).
Interactive geometry software can help teachers to illustrate abstract concepts
in geometry and students may explore and understand the secret of plane
geometry on their own. Therefore, DGS systems are used for two activities:

"http://en.wikipedia.org/wiki/Dynamic_geometry _software
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(1) to help a student to create geometric constructions; (2) to help a student
to explore a figure, invent conjectures, and check facts.

From the beginning, various kinds of DGS have been the paradigm of new
technologies applied to mathematics education, area where they have found
their most applications. Their convenience in the classroom is almost unan-
imously praised by education experts. However, questions have been raised
on the influence or interaction of the use of DGS on the development of the
concept of proof in school curricula [2]. Sometimes, formal proofs have been
replaced by the construction of a great number of examples of a configuration,
what has come to be known as a visual proof.

Geometry is also an important area for automatic theorem proving (ATP),
the field of using automated methods for creating mathematical proofs. The
exactness and broad theoretical foundation that is present in geometry and
the beauty and elegance of geometry make it a wonderful platform for experi-
mentation and testing for new algebraic and other methods.

Several DGS systems with proof-related features can be roughly classified
into two categories [5]:

e systems that permit one to build proofs;

e systems that permit one to check facts using an automated theorem
prover.

A breakthrough in automated geometry theorem proving (AGTP) is made
by Wen-Tsiin Wu. Restricting himself to a class of geometry statements of
equality type, in 1977 Wu introduced a method which can be used to prove
quite difficult geometry theorems efficiently. Here we would like to remind
that Wu’s method cannot deal with theorems involving inequalities.

AGTP has two major lines of research [4, 9]: the synthetic proof style and
the algebraic proof style. Algebraic proof style methods are based on reducing
geometric properties to algebraic properties expressed in terms of Cartesian
coordinates. Synthetic methods attempt to automate traditional geometry
proof methods. The synthetic methods provide traditional (not coordinate-
based), human-readable proofs. In both cases (algebraic or synthetic) we claim
that the AGTPs can be used in the learning process.

2. WinGCLC software

WinGCLC package is a tool which enables producing geometrical figures (i.e.
digital illustrations) on the basis of their formal descriptions. This approach
is guided by the idea of formal geometrical constructions. A geometrical con-
struction is a sequence of specific, primitive construction steps (elementary
constructions). Figure descriptions in WinGCLC are usually made by a list
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of definitions of several (usually very few) fixed points (defined in terms of
Cartesian plane, e.g. by pairs of coordinates) and a list of construction steps
based on that points.

WinGCLC uses a specific language for describing figures. The GCLC lan-
guage consists of the following groups of commands: definitions, basic con-
structions, transformations, drawing commands, marking and printing com-
mands, low level commands, Cartesian commands, commands for describing
animations, commands for the geometry theorem prover. These descriptions
are compiled by the processor and can be exported to different output formats.
There is an interface which enables simple and interactive use of a range of
functionalities, including making animations.

The theorem prover (GCLCprover) built into WinGCLC is based on Chou’s
algorithm for proving geometry theorems (area method, see [1]). This method
belongs to the group of synthetic methods. The main idea of the method is to
express hypotheses of a theorem using a set of constructive statements, each
of them introducing a new point, and to express a conclusion by an equality of
expressions in geometric quantities such as ratio of directed parallel segments
AB/CD (where AB denotes the signed length? of a segment AB), signed area
Sapc (the area of a triangle ABC with a sign depending on the order of the
vertices A, B and C3) and Pythagoras difference Papc = AB° + OB’ - AC”
as a generalization of the Pythagoras equality (for details see [8]).

The proof is then based on eliminating (in reverse order) the points in-
troduced before, using for that purpose a set of appropriate lemmas. After
eliminating all introduced points, the current goal becomes a trivial equal-
ity that can be simply tested for validity. At all stages, different expression
simplifications are applied to the current goal.

Let us take next elimination lemma and one example:

Lemma 1. Let S4py be the signed area of a triangle ABY for distinct points
A, B and Y. For collinear points Y,U and V it holds
Uy YV
ABY A% ABV TG ABU

Example 1 (of elimination technique). Let Y be a point on a line passing
through a given point W and parallel to a line UV, such that WY = rUV,

*If we prescribe a direction from A to B as positive, then AB = |AB| and BA = —|AB|.
3Sapc is positive if we move along the perimeter of a triangle from the vertex A to B
and C anti-clockwise.
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where 7 can be a rational number, a rational expression in geometric quanti-
ties, or a variable. Then it holds:

Sapy = Sapw + 1(Sapy — SaBv).

The constructions accepted by GCLCprover are: construction of a line
given by two points; an intersection of two lines; the midpoint of a segment;
a segment bisector; a line passing through a given point, perpendicular to
a given line; a foot from a point to a given line; a line passing through a given
point, parallel to a given line; an image of a point in a given translation; an
image of a point in a given scaling transformation; a random point on a given
line.

Let us consider the triangle area theorem as an example:

Example 2 (Triangle area theorem). Each median divides the triangle into
two smaller triangles which have the same area.

Proof (using the method). Let ABC be a triangle, and M be a midpoint of
AB. We first translate the goal into its equivalent using the signed area:

Samc = Suc-

The proof is actually to eliminate a point M. Using Example 1, the above
equality of signed areas can be reduced to the expressions as follows:

1

Samc = Scam = Scaa + §(SCAB — Scaa),
1

Susc = Spem = Spca + 5(5303 — SBca).

The new goal is:

1 1
ZScap = =Spca.
2 CAB 2 BCA

The proof is completed as Scap = Sca-

We can use WinGCLC to validate the previous statement by describing
the construction and proving the property for given three fixed distinct points
A, B,C with M being the midpoint of AB. The WinGCLC code for this
construction and the corresponding illustration (IWTEX output), are shown in
Figure 1. It can be checked (using GCLCprover) that a median CM divides
a triangle ABC' into two smaller triangles (AAMC and AM BC') which have
the same area, i.e. Saprc = Syppe. This statement can be given in the code
of GCLC language by the following line:
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point A 10 10
point B 70 10
point C 55 35
midpoint M A B

drawsegment
drawsegment
drawsegment
drawsegment

Q= W=
=Eao0aw

cmark_b
cmark_b
cmark_t
cmark_b

= QW=

Figure 1: Example 1

prove { equal { signed_area3 A M C } { signed_area3 M B C } }

The prover produces a short report of information on number of steps
performed, on CPU time spent and whether or not the conjecture has been
proved. For our example we have:

The theorem prover based on the area method used.

Number of elimination proof steps: 2

Number of geometric proof steps: 7
Number of algebraic proof steps: 9
Total number of proof steps: 18

Time spent by the prover: 0.004 seconds
The conjecture successfully proved.

The prover output is written in the file triangle_area.tex.

The prover also generates a proof in IXTEX form (in the file proof.tex). We
can control the level of details given in the generated proof. The proof con-
sists of proof steps. For each step, there is an explanation and its semantic
counterpart. This semantic information is calculated for concrete points used
in the construction. For our example (in Figure 1), we will get the following:
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(1) Sanvc = SuBe , by the statement
2) Scam = Spom , by geometric simplifications
(3) <SCAA + <%(SCAB +(-1- SOAA)))) = Spoum , by Lemma 29 (M eliminated)
(4) <0 + (%(SCAB + (-1 O)))) = Sgcm , by geometric simplifications
(5) (%SCAB> =Spcm , by algebraic simplifications
(6) <%SCAB> = <SBCA + (%(SBCB +(-1- SBCA))>> , by Lemma 29 (M eliminated)
(7 <%SCAB> = <SCAB + <%(0 +(-1- SCAB))>> , by geometric simplifications
(8) 0=0 , by algebraic simplifications

Q.E.D
3. GeoThms

GeoThms*, is a framework that links DGS (GCLC and Euklides), AGTP
(GCLCprover), and a repository of geometry problems (GeoDB), providing
a common web interface for all these tools (see Figure 2).

GeoThms
Geometry Framework
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Figure 2: GeoThms — Regular Users Page

Integration of GeoThms with dynamic geometry software and automatic
theorem provers and its repository of theorems, figures and proofs give the
user the possibility to browse easily through the list of geometric problems,
their statements, illustrations and proofs, and also to use interactively the
drawing and proving programs (see Figure 3).

“GeoThms is a set of PHP scripts of top of a MySQL database and is accessible from
http://hilbert.mat.uc.pt/GeoThms.
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Figure 3: GeoThms — Theorem Report

As a web service GeoThms emphasizes [6]: (1) a simple interface based on
using geometrical specification languages of the underlying geometrical tools;
(2) a low communication burden. A basic communication, concerning describ-
ing geometrical constructions and conjectures, is based on formal languages
of the underlying geometrical tools. Within GeoThms, data are presented in
textual form as GCLC code, or as XML rendered as HTML, and graphical
form as JPEG image, or as SVG image. When adding new geometrical tools,
it will be sufficient to develop converters from its format to XML and vice
versa. This enables converting from any format to any other, and consequently
makes usable the whole of the repository to any geometrical tool.

4. Conclusion

In this paper we present some advantages of interactive geometry sys-
tem WinGCLC, automated theorem prover GCLCprover, and geometry
framework GeoThms. The built-in module is based on the area method for
Euclidean geometry. The main advantage of this method is that each step of
the generated proof has clear geometric meanings and the proofs are gener-
ally elegant. The computer program based on the area method has produced
proofs of more than 500 geometry theorems, some of which are even shorter
than those given by geometry experts. A drawback is that the students must
be taught the "area axioms" instead of the standard Euclidean axioms.
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