PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface functionalization of poly(L-lactide-co-glycolide) membranes with amphiphilic poly(2-oxazoline) for guided tissue regeneration and treatment of bone tissue defects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main challenge of this research was to functionalize the surface of poly(L-lactide-co-glycolide) (PLGA) membranes with amphiphilic poly(2-oxazoline) (POx) in order to change PLGA chemical state and properties. Poly(2-oxazolines) are very powerful polymers, which thanks to active pendant groups can be easily functionalized with biologically active molecules or peptides. The membranes were prepared by dissolving PLGA, POx, and poly(ethylene glycol) (PEG, 1000 Da) in methylene chloride (DCM), followed by PEG leaching. POx molecules were preferentially adsorbed at the interface PLGA-POx-PEG thanks to affinity to both hydrophilic (PEG) and hydrophobic (PLGA) chains. The properties of the membranes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and wettability tests. Cytocompatibility of the materials in contact with osteoblast-like MG-63 cells was studied by evaluation of cell viability (Alamar-Blue test), live/dead and phalloidin/DAPI staining. The results show that the presence of POx influenced topography of the PLGA membranes, but did not have an impact on their wettability. All membranes were fo-und cytocompatible with model osteoblasts. Presence of POx resulted in better cell adhesion as shown by microscopic studies after fluorescence staining for nuclei and cytoskeleton actin filaments. In summary, one-step phase separation process between PLGA, PEG, and POx, dissolved in DCM followed by drying and PEG leaching resulted in cytocompatible PLGA membranes with immobilised POx, which might be considered for guided tissue regeneration technique in periodontology and in bone tissue engineering.
Rocznik
Strony
16--20
Opis fizyczny
Bibliogr. 15 poz., rys., zdj.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Linde A., Alberius P., Dahlin C., Bjurstam K., Sundin, Y.: Osteopromotion: A Soft-Tissue Exclusion Principle Using a Membrane for Bone Healing and Bone Neogenesis. Journal of Periodontology, 64(11s) (1993) 1116-1128. https://doi.org/10.1902/jop.1993.64.11s.1116
  • [2] Gentile P., Chiono V., Carmagnola I., Hatton, P.V.: An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences 15(3), (2014) 3640-3659. https://doi.org/10.3390/ijms15033640
  • [3] Krok M., Pamuła E.: Poly(L-lactide-co-glycolide) Microporous Membranes for Medical Applications Produced with the Use of Polyethylene Glycol as a Pore Former. J Applied Polymer Science 125 (2012) E187-E199.
  • [4] Bartold P.M., Gronthos S., Ivanovski S., Fisher A., Hutmacher D.W.: Tissue engineered periodontal products. Journal of Periodontal Research 51(1) (2016) 1-15. https://doi.org/10.1111/jre.12275
  • [5] Pa Z., Ding J.: Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2(3) (2012) 366-377. https://doi.org/10.1098/rsfs.2011.0123
  • [6] Zhang R., Ma P.X.: Poly(alpha-hydroxyl acids)/hydroxyapatite po-rous composites for bone-tissue engineering. I. Preparation and morp-hology. Journal of Biomedical Materials Research 44 (1999) 446-455.
  • [7] Battistella E., Varoni E., Cochis A., Palazzo B., Rimondini L.: Degradable polymers may improve dental practice. Journal of Applied Biomaterials & Biomechanics 9(3) (2011) 223-231. https://doi.org/10.5301/JABB.2011.8867
  • [8] Datta S.,Jutková A., Šrámková P., Lenkavská L., Huntošová V., Chorvát D., Miškovský P., Jancura D., Kronek J.. Unravelling the Excellent Chemical Stability and Bioavailability of Solvent Responsive Curcumin-Loaded 2-Ethyl-2-oxazoline-grad-2-(4--dodecyloxyphenyl)-2-oxazoline Copolymer Nanoparticles for Drug Delivery.Biomacromolecules 19 (2018) 2459-2471.
  • [9] Adams N., Schubert U.S.: Poly(2-oxazolines) in biological and biomedical application contexts. Advanced Drug Delivery Reviews, 59(15) (2007) 1504-1520. https://doi.org/10.1016/j.addr.2007.08.018
  • [10] Scharnweber D., Jordan R., Pamula E.: Oberflächenfunktio-nalisiertes Polymer für biologische Anwendungen und Verfahren zu dessen Herstellung, Patent DE 102013225772 B4, recieved 2016-11-14; published 2017-03-02.
  • [11] Dobrzynski P., Kasperczyk J., Janeczek H., Bero M.: Synthesis of Biodegradable Copolymers with the Use of Low Toxic Zirconium Compounds. 1. Copolymerization of Glycolide with l-Lactide Initiated by Zr(Acac)4. Macromolecules 34 (2001) 5090-5098.
  • [12] Luxenhofer R., Schulz A., Roques C., Li S., Bronich T.K., Batrakova E.V., Jordan R., Kabanov A.V.: Doubly amphiphilic poly(2-oxazoline)s as high high-capacity delivery systems for hydrophobic drugs. Biomaterials 31 (2010) 4972-4979.
  • [13] Pamuła E., Błazewicz M., Paluszkiewicz C., Dobrzyński P.: FTIR study of degradation products of aliphatic polyesters-carbon fibres composites. Journal of Molecular Structure 596(1-3) (2001) 69-75. https://doi.org/10.1016/S0022-2860(01)00688-3
  • [14] Souza Júnior F.G. de, Cerruti R., Pinto J.C., Peña L., Saez V., Ramón J.A., Fernandes E.: Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin. Polímeros 26(2) (2016) 137-143. https://doi.org/10.1590/0104-1428.2323
  • [15] Macgregor-Ramiasa M.N., Cavallaro A.A., Vasilev K.: Proper-ties and reactivity of polyoxazoline plasma polymer films. Journal of Materials Chemistry 3(30) (2015) 6327-6337. DOI: 10.1039/c5tb00901d
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8492192-94a8-41e2-934a-5bae2c203071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.