Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In mines, providing proper ventilation during emergencies is a key aspect of ensuring safety and protecting human lives. In the case of indirect intervention by taking extreme measures (the closure of the entire mine using fire covers), it is necessary to ensure an emergency passage of miners to the surface providing a sufficient amount of mine air for them. The speed of the air must not exceed the limit for the safe passage of people, and must not cause unstable fan operation. The modelling of this problem in this case is carried out on a simplified ventilation network, in which two interconnected pits at a depth of 1000 m are displayed. The input data and limit values correspond to the valid legislation of the Czech Republic, but the resulting proposed methodology is universal and applicable to any mine or underground space that is artificially ventilated, and the parameters of the ventilation network are known. The issue of safety is always the main and key element of underground mining or underground work, and this article provides a model example of how to approach it even in the most difficult situations.
Wydawca
Czasopismo
Rocznik
Tom
Strony
403--421
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- VŠB-Technical University of Ostrava, Faculty of Mining and Geology, Czech Republic
autor
- VŠB-Technical University of Ostrava, Faculty of Mining and Geology, Czech Republic
autor
- Czech Mining Authority Prague, Czech Republic
autor
- Czech Mining Authority Prague, Czech Republic
autor
- Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
Bibliografia
- [1] M. Tutak, J. Brodny, D. Szurgacz, L. Sobik, S. Zhironkin, The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation – A Case Study. Energies 13(18) (2020). DOI: https://doi.org/10.3390/en13184891.
- [2] A .V. Shalimov, Numerical modeling of air flows in mines under emergency state ventilation. Journal of Mining Science 47 (6), 807-813 (2011). DOI: https://doi.org/10.1134/S106273914706013X
- [3] K. Wang, H. Hao, S. Jiang, Z. Wu, W. Cai, Z. Wang, Study on fire smoke flow characteristics in the ventilation network and linkage control system in coal mines. Fire and Materials 44 (7), 989-1003 (2020).DO I: https://doi.org/10.1002/fam.2901.
- [4] M.C. Suvar, D. Cioclea, V. Arad, C. Lupu, N.I. Vlasin, Method for Improving the Management of Mine Ventilation Networks After an Explosion. Environmental Engineering and Management Journal 16 (6), 1373-1381 (2017).DOI : https://doi.org/10.30638/eemj.2017.148.
- [5] N.-I. Vlasin, G.A. Gaman, C. Lupu, E. Ghicioi, E. Cozma, VENT MEX – portable software for mine ventilation characteristic curves, in: Geoconference On Science And Technologies In Geology. Exploration And Mining, Sgem 2014, 3, 761-768 (2014).
- [6] W. Dziurzynski, J. Kruczkowski, Validation of the mathematical model used in the Ventgraph programme on the example of the introduction of new headings to the ventilation network of mine. Archives of Mining Sciences 52(2), 155-169 (2007).
- [7] W. Dziurzyński, M. Grzywacz, J. Krawczyk, Analysis of Ventilation System and Assessment of Hazards in the Process of Progressing Liquidation of Workings in Mine ‘S’. In: Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, 227-237 (2019).DOI: https://doi.org/10.1007/978-3-319-99903-6_20.
- [8] A.K. Jha, Importance and Characteristics of Main Mechanical Ventilator, in: Selection of Main Mechanical Ventilators for Underground Coal Mines. Springer International Publishing (2017).DOI: https://doi.org/10.1007/978-3-319-56859-1_1.
- [9] K. Gao, L. Deng, J. Liu, L. Wen, D. Wong, Z. Liu, Study on Mine Ventilation Resistance Coefficient Inversion Based on Genetic Algorithm. Archives of Mining Sciences 63 (4), 813-826 (2018).DOI: https://doi.org/10.24425/ams.2018.124977.
- [10] M. Semin, L. Levin, Mathematical Modeling of Air Distribution in Mines Considering Different Ventilation Modes. Mathematics 11 (4), (2023). DOI: https://doi.org/10.3390/math11040989.
- [11] M. Bascompta, L. Sanmiquel, H.F. Anticoi, J. Oliva, Ventilation friction factor determination and comparison:Two case studies of potash mining. Journal of The Southern African Institute of Mining and Metallurgy 119 (10),865-870 (2019). DOI: https://doi.org/10.17159/2411-9717/707/2019.
- [12] S. Gillies, H.W. Wu, Case Studies from Simulating Mine Fires in Coal Mines and Their Effects on Mine Ventilation Systems. In: Fifth Australasian Coal Operators Conference, 111-125 (2004).
- [13] Z. Ouyang, G. Zhang, Q. Li, X. Lai, H. Qin, X. Zhao, X. Zhou, Study on the rock burst tendentiousness of coal under different gas pressures. Arabian Journal of Geosciences 13 (1), (2020).DOI: https://doi.org/10.1007/s12517-019-4991-y.
- [14] X. Liu, X. Wang, E. Wang, X. Kong, C. Zhang, S. Liu, E. Zhao, Effects of gas pressure on bursting liability of coal under uniaxial conditions. Journal of Natural Gas Science and Engineering 39, 90-100 (2017).DOI : https://doi.org/10.1016/j.jngse.2017.01.033.
- [15] T.E. Kgarume, S.M. Spottiswoode, R.J. Durrheim, Statistical Properties of Mine Tremor Aftershocks. Pure and Applied Geophysics 167 (1-2), 107-117 (2010). DOI: https://doi.org/10.1007/s00024-009-0004-5.
- [16] J. Liu, M. Lin, L. Jin, G. Li, S. Ou, Y. Wang, T. Wang, M. Jueraiti, Y. Tian, J. Wang, Influence of Molasses on the Explosion and Decomposition Properties of the Coal Dust Deposited in Underground Mines. Energies 16 (6),(2023). DOI: https://doi.org/10.3390/en16062758.
- [17] V. Kostenko, O. Zavialova, S. Pozdieiev, T. Kostenko, V. Hvozd, Mechanism of development of coal dust continuous explosion in a network of mine workings. Rudarsko-Geološko-Naftni Zbornik 37 (1), 45-53 (2022).DOI: https://doi.org/10.17794/rgn.2022.1.5.
- [18] X. Chen, R. Bi, J. Huang, W. Shan, J. Xiao, D. Wang, Experimental study on early prediction index gas for spontaneous combustion. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects 46 (1), 7003-7017(2024). DOI: https://doi.org/10.1080/15567036.2020.1746443.
- [19] M. Onifade, B. Genc, Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology 28 (6), 933-940 (2018). DOI : https://doi.org/10.1016/j.ijmst.2018.05.013.
- [20] R. Hansen, The Passive Fire Protection of Mining Vehicles in Underground Hard Rock Mines. Mining, Metallurgy&Exploration 38 (1), 609-622 (2021). DOI: https://doi.org/10.1007/s42461-020-00359-7.
- [21] A .A. Sidorenko, Endogenous fire hazard Kuzbass mines, Journal of Mining Institute 207, 66-69 (2014).
- [22] D.S. Hallman, Foamed backfilling for combatting mine fires. Environmental Geotechnics 9 (5), 310-317 (2022).DOI : https://doi.org/10.1680/jenge.19.00079.
- [23] M.I. De Rosa, C.D. Litton, Rapid Detection and Suppression of Mining Equipment Cab Fires. Fire Technology46 (2), 425-435 (2010). DOI: https://doi.org/10.1007/s10694-007-0022-8.
- [24] S.-H. Tang, X.-P. Zhang, Q.-S. Liu, W.-Q. Xie, X.-L. Wu, P. Chen, Y.-H. Qian, Control and prevention of gas explosion in soft ground tunnelling using slurry shield TB M. Tunnelling and Underground Space Technology 113,(2021). DOI : https://doi.org/10.1016/j.tust.2021.103963.
- [25] W. Dziurzynski, S. Nawrat, J. Roszkowski, W. Trutwin, Computer simulation of mine ventilation disturbed by fires and the use of fire extinguisher. Proceedings of the 6th International Mine Ventilation Congress, 389-393 (1997).
- [26] Y. Hong, D. Li, Q. Wu, H. Xu, 3D Path Network Planning: Using a Global Optimization Heuristic for Mine Water-Inrush Evacuation. Computing and Combinatorics, 279-290 (2019).DOI: https://doi.org/10.1007/978-3-030-26176-4_23.
- [27] Z. Shao, M. Meyrieux, M. Kumral, Optimal junction localization minimizing maximum miners’ evacuation distancein underground mining network. Mining Technology 132 (1), 41-54 (2023).DOI: https://doi.org/10.1080/25726668.2022.2159307.
- [28] Z. Fu-Bao, S. Bo-Bo, C. Jian-Wei, M. Ling-Jun, A New Approach to Control a Serious Mine Fire with Using Liquid Nitrogen as Extinguishing Media. Fire Technology 51 (2), 325-334 (2015).DOI: https://doi.org/10.1007/s10694-013-0351-8.
- [29] G. Zhang, S. Yuan, M. Deng, Fire extinguishing mechanism and application research of nitrogen injection displacement. In: International Mining Forum on Mine Safety and Efficient Exploitation Facing Challenge off the21st Century, 1-5 (2010).
- [30] A. Haghighat, K. Luxbacher, Tenability analysis for improvement of firefighters’ performance in a methane fireevent at a coal mine working face. Journal of Fire Sciences 36 (3), 256-274 (2018).DOI: https://doi.org/10.1177/0734904118767066.
- [31] B. Wang, Z. Rao, Q. Xie, P. Wolański, G. Rarata, Brief review on passive and active methods for explosion and detonation suppression in tubes and galleries. Journal of Loss Prevention in The Process Industries 49, 280-290(2017). DOI : https://doi.org/10.1016/j.jlp.2017.07.008.
- [32] V. Zubíček, V. Hudeček, M. Kubica, A Proposal of Rock Burst Control Measures at the Coalface No. 1 4064 atthe Mining Plant 1, in OKD , A. S. Czech Republic, Inżynieria Mineralna 1 (1), (2020).DOI: https://doi.org/10.29227/IM-2020-01-17.
- [33] G. Pach, J. Sułkowski, Z. Różański, P. Wrona, Costs Reduction of Main Fans Operation According to Safety Ventilation in Mines – A Case Study. Archives of Mining Sciences 63 (1), 43-60 (2018).DOI: https://doi.org/10.24425/118884.
- [34] J. Linhart, Vliv důlních požárů na větrání. Záchranář 30 (6) 2-3 (1994).
- [35] P. Prokop, P. Zapletal, Standardization guidelines for Ostrava-Karviná coal district mine ventilation. Ostrava (2013).
- [36] Decree No. 22/1989 Coll. Of The Czech Mining Authority on Occupational Safety and Health Protection and Operational Safety During Mining Activities And Mining Of Unmined Minerals Underground (1989).
- [37] W. Budryk, Pożary i wybuchy w kopalniach. Katowice. Wydawnictwo Górniczo-Hutnicze (1956).
- [38] Z. Ogorek, L. Suchan, Zpráva č. 154 Termodynamické změny důlních větrů při požáru v horizontální chodbě, VVUU Ostrava (1976).
- [39] W. Dziurzyński, Prognozovanie procesu przewietriania kopalni glembinowej w warunkach pozaru podzemnego, PAN Krakow (1998).
- [40] OKD – Company profile. https://www.okd.cz/en/about-us/company-profile; 2012 [cited 25 June 2023].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c848e01f-12f0-4688-a0c3-aa91740fc8df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.