
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 29

On sentence membership problem in context-sensitive languages

P.A. RYSZAWA

pawel.ryszawa@wat.edu.pl

Military University of Technology, Faculty of Cybernetics
Kaliskiego Str. 2, 00-908 Warsaw, Poland

A new type of graph is introduced, the grammar graph. The possibility of assigning labels to each node in such
a graph extends it to the grammar net. The grammar net should be considered as a new graphical tool that helps
in an analysis of whether a particular sentence belongs to a given context-sensitive grammar. Another concept,
the derivation net, closely related to the grammar graph and of a similar structure, will be used to show
an algorithm that is able to decide that some sentences do not belong to a language generated by a context
sensitive grammar, while leaving others as a candidate members of it.

Keywords: context-sensitive grammar, non-contracting grammar, formal language, graph, parsing.

1. Introduction

In the formal language theory, every grammar
can be expressed in terms of an alphabet (finite
set of terminal symbols) denoted by 𝑉𝑇, finite set
of non-terminal symbols denoted by 𝑉𝑁 and a set
of production rules – i.e. “prescriptions” of how
to derive a “correct” sentence over the alphabet
with those symbols, starting from some non-
-terminal symbol S. Each production is of
the form 𝜇1𝜇2 … 𝜇𝑚 → 𝛾1𝛾2 … 𝛾𝑛, where 𝜇𝑖, 𝛾𝑖
are symbols. A particular class of grammars,
where 𝑚 < 𝑛 and at least one of 𝜇𝑖 is non-
-terminal, is called non-contracting. If, for each
production of the above form, 𝑛 does not exceed
some 𝑁, we call this a non-contracting grammar
of 𝑁-th order. Every such grammar has its
equivalent context-sensitive grammar and vice-
-versa, in the sense that both generate the same
language (weak equivalence). By definition,
context-sensitive grammars are those with
productions of the form 𝛼𝜇𝛽 → 𝛼𝛾1𝛾2 … 𝛾𝑛𝛽,
where 𝛼 = 𝛼1𝛼2 …𝛼𝑝, 𝛽 = 𝛽1𝛽2 …𝛽𝑞, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖
are some symbols (terminal or non-terminal) and
𝜇 is some non-terminal symbol. For the sake of
simplicity, it is assumed throughout this paper
that an immaterial and trivial type of production
𝑃:𝑈 → 𝜀 (deriving empty string), where 𝑈 ∈ 𝑉𝑁,
is not included in the considered grammars.

It has been already proved (see e.g. [3]) that
for each non-contracting grammar there exists
an equivalent grammar of 2nd order. Moreover,
one can easily construct an equivalent grammar
where every production containing a terminal
symbol 𝑎 can only be of the form 𝐴 → 𝑎. Thus,
every context-sensitive grammar can be

equivalently expressed via a grammar with
productions of the form: 𝐴 → 𝐵𝐶, 𝐴𝐵 → 𝐶𝐷,
𝐴 → 𝐵 and 𝐴 → 𝑎, where capital letters denote
non-terminal and small letters denote terminal
symbols.

So far, there have been found many
algorithms for parsing different kind of
grammars. One of them, C-Y-K (see e.g.
[5], [3]) – for context-free grammars, was
an inspiration to construct the one presented
it this paper. This new algorithm will be
illustrated with one of the best known context-
-sensitive language {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 1}.

2. Grammar graph and net

To start with, we need a new graphical “tool” to
express the ideas laying behind the derivation of
grammar trees. This is “grammar graph” which
is a special kind of the directed bipartite graph
with all the edges ordered in its endpoints.
Two set of nodes are represented by rectangles
and circles. Single-lined circle nodes will
represent non-terminal symbols, double-lined
circles will represent terminal symbols and
rectangles will represent productions. More
formally, the grammar graph 𝐺� representing
some grammar 𝐺 = 〈𝑉𝑁,𝑉𝑇 ,𝑃, 𝑆〉 is modelled as:

𝐺� = 〈𝑉,𝛤𝑆 ,𝛤𝑁−1〉 (1)
where:
𝑉 = 𝑉𝑁 ∪ 𝑉𝑇 ∪ 𝑃 is a set of nodes identified
with symbols and production rules of 𝐺,
𝑉𝑁 – a set of non-terminal symbol nodes,
𝑉𝑇 – a set of terminal symbols nodes (alphabet),
P – a set of production rules,

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 30

𝛤S:𝑃 → (𝑉𝑁 ∪ 𝑉𝑇)+ is a mapping representing
an ordered list (tuple) of the directed edges
outgoing from each 𝑃𝑖 ∈ 𝑃 to their successor
symbol nodes, as pointed by the graph arrows.
𝛤𝑁−1:𝑃 → 𝑉𝑁+ is a (“reverse”) mapping from
a production node to an ordered list (tuple)
of its predecessor non-terminal symbol nodes.
The tuple must contain at least one element
because every production in the underlying
grammar has at least one symbol on the left.
Please note the notation: 𝑋+ = 𝑋 × 𝑋∗ =
= 𝑋 × (𝑋 ∪ 𝑋2 ∪ …) = 𝑋2 ∪ 𝑋3 ∪ … (𝑋∗ is the
Kleene closure). For all productions 𝑃𝑖 ∈ 𝑃 of
the form 𝑃𝑖: 𝜇1𝜇2 … 𝜇𝑚 → 𝛾1𝛾2 … 𝛾𝑛, the maps
𝛤S and 𝛤𝑁−1 are subject to the following
constraints:

𝛤S(𝑃𝑖) = 〈𝛾1, 𝛾2, … , 𝛾𝑛〉 (2)

𝛤𝑁−1(𝑃𝑖) = 〈𝜇1, 𝜇2, … , 𝜇𝑚〉 (3)

In this paper, though, examples will be based on
non-contracting grammars of order 2.

It is emphasized here that the above defined
graph is of special kind. All the arrows incoming
to and outgoing from a production node are
ordered. This is expressed via the special form
of the mapping 𝛤S and 𝛤𝑁−1 that maps
the production nodes to a set of tuples of nodes
and not a family of their subsets! Of course, each
tuple, by its nature, holds the information about
the order. Graphically, it will be depicted by
the arrow starting points placed from left to right
on the edge of a production node symbol as
per 𝛤S. The same concerns the arrows incoming
to a production node, all of them are strictly
ordered based on 𝛤𝑁−1.

Example 1
The first example shows the basic parts of
grammar graphs for productions:

Fig. 1. A fragment of some grammar graph
representing single production P1: S→AB

The following productions 𝑃𝑖 are considered:
𝑃1: 𝑆 → 𝐴𝐵, 𝑃2: 𝑆 → 𝐵𝐴, 𝑃3:𝐴 → 𝐵, 𝑃4:𝐴 → 𝑎,
𝑃5:𝐴𝐵 → 𝐶𝐷 and 𝑃6:𝐵𝐴 → 𝐶𝐷. The Figure 1
shows the first of them. Recall that the starting
points of the arrows are ordered according to

the order of symbols on the right-hand side in
the corresponding production. Here, 𝛤S(𝑃1) =
= 〈𝐴,𝐵〉 and 𝛤𝑁−1(𝑃1) = 〈𝑆〉. The next graph,
in Figure 2, although equivalent in terms of
the classic graph definition to that of Figure 1,
represents different production 𝑆 → 𝐵𝐴. Here,
the difference is that 𝛤S(𝑃2) = 〈𝐵,𝐴〉.

Fig. 2. A graph fragment representing P2: S→BA

Next, a production of the form 𝐴 → 𝐵 is shown
in Figure 3. Here, 𝛤S(𝑃3) = 〈𝐵〉 and 𝛤𝑁−1(𝑃3) =
= 〈𝐴〉.

Fig. 3. A grammar graph representing single
production P3: A→B

A production of the form 𝐴 → 𝑎 is shown in
Figure 4. Here, 𝛤S(𝑃4) = 〈𝑎〉 and 𝛤𝑁−1(𝑃4) =
= 〈𝐴〉.

Fig. 4. A grammar graph representing single
production P4: A→a

A production of the form 𝐴𝐵 → 𝐶𝐷, specific to
the non-contracting grammars, is shown in
Figure 5.

A

P4

a

A

P3

B

S

B A

P2

S

B A

P1

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 31

Fig. 5. A graph fragment representing P5: AB→CD

In the above graph, the production node 𝑃5
represents the order of the non-terminal nodes 𝐴
and 𝐵 by ordering the incoming arrows from left
to right. 𝛤S(𝑃5) = 〈𝐶,𝐷〉 and 𝛤𝑁−1(𝑃5) = 〈𝐴,𝐵〉.

The last example, representing
the production node 𝑃6 is shown in Figure 6.
It differs from 𝑃5 in that it has 𝛤𝑁−1(𝑃6) =
= 〈𝐵,𝐴〉, i.e. the ordering of the predecessor
nodes tuple is different.

Fig. 6. A graph fragment representing P6: BA→CD
▲

3. Labelling

Having defined the basic grammar graph
structures, let us introduce an extension –
a labelling on the grammar graph, thus, letting us
derive the definition of the grammar net.
A grammar net is a grammar graph with some
labelling defined on it. The grammar graph 𝐺�
labelling, denoted by 𝔏𝐺� is:

𝔏𝐺� :𝑉 → 2�𝐸𝐼� (4)
where:
𝐸𝐼 – the set of (so called) first order labels,
𝑉 → 2�𝐸𝐼� – a mapping that assigns a subset of
first order labels to each grammar graph node.

Each first order label 𝑒 ∈ 𝐸𝐼 is of the form
𝑒 = 〈𝜓,𝑎, 𝑏,𝜑〉 (hereinafter shortly denoted as
“label” 𝑒) belongs to the set:

𝐸𝐼 = �〈𝜓, 𝑎, 𝑏,𝜑〉 �
 1 ≤ 𝑎 ≤ 𝑏 ≤ |𝜔|;
𝑎, 𝑏 ∈ ℕ;𝜓,𝜑 ∈ 𝐸𝐼𝐼�

 (5)

where:
𝑎, 𝑏 – correspond to the position of the first and
the last character of some sentence 𝜔,
respectively,
𝐸𝐼𝐼 – the set of second order labels,
𝜓,𝜑 ∈ 𝐸𝐼𝐼 – some second order labels.

A second order label is of the form
𝜓 = 〈𝑎, 𝑗,Θ, 𝑏〉 ∈ 𝐸𝐼𝐼 and

𝐸𝐼𝐼 = �〈𝑎, 𝑗,Θ, 𝑏〉�
0 ≤ 𝑎 ≤ 𝑏 ≤ |𝜔| + 1;

𝑎 ∈ ℤ; 𝑏 ∈ ℕ;Θ ∈ 𝑃�; 𝑗 ∈ ℕ�

(6)
where:
𝑎, 𝑏 – have the same meaning as for the first
order labels,
𝑃� = 𝑃 ∪ {#} – is a set of productions extended
with a special mark #,
𝑗 – is some natural number,
Θ – is some production from the grammar G or
the special mark #.
To simplify the notation, the left part of the label
of the form 〈〈𝑎 − 1,1,Θ,𝑎〉,𝑎…� will be shortly
denoted by 〈Θ;𝑎…�. Meanwhile, the right part of
the label of the form �…𝑏, 〈𝑏, 1,Θ, 𝑏 + 1〉〉 will be
denoted by �…𝑏;Θ〉.

Now, let 𝔏𝐺� be some labelling. Since
the grammar graph 𝐺� is unambiguously defined
by the corresponding grammar G, the labelling
on 𝐺� can be identified with G as well, i.e.

𝔏𝐺 ≝ 𝔏𝐺� . (7)

Definition 1
Let us also impose a partial order in the set of all
possible labelling on 𝐺�, denoted by ≽,
as follows: 𝔏𝐺′

1 ≽ 𝔏𝐺′′
2 if and only if

𝔏𝐺′
1 (𝑣) ⊇ 𝔏𝐺′′

2 (𝑣), for 𝑣 ∈ 𝑉′ ⊇ 𝑉′′, where
𝑉′ = 𝑉𝑁′ ∪ 𝑉𝑇′ , 𝑉′′ = 𝑉𝑁′′ ∪ 𝑉𝑇′′ for 𝐺′ =
= 〈𝑉𝑁′ ,𝑉𝑇′ ,𝑃′, 𝑆′〉 and 𝐺′′ = 〈𝑉𝑁′′,𝑉𝑇′′,𝑃′′, 𝑆′′〉. ●

The labelling closure 𝔏𝐺���� is the minimal labelling
“generated” by 𝔏𝐺 according to the following
rules:
a) (initial rule) The closure contains all of

the elements from the generating
labelling, i.e.

𝔏𝐺���� ≽ 𝔏𝐺 . (8)

b) (joining rule) If for a production 𝑃𝑖 ∈ 𝑃 of
the form 𝑃𝑖: 𝛾 → 𝐵1𝐵2 …𝐵𝑚, where
𝛾 ∈ (𝑉𝑁)∗ and 𝐵1,𝐵2, … ,𝐵𝑚 ∈ 𝑉𝑇 ∪ 𝑉𝑁,
there exist 𝜓0,𝜓1, …𝜓𝑚 ∈ 𝐸𝐼𝐼 and
𝑎1, … ,𝑎𝑚 ∈ ℕ, 𝑏1, … , 𝑏𝑚,∈ ℕ such that for
each 𝑘 = 1,2, … ,𝑚:

𝑒𝑘 = 〈𝜓𝑘−1,𝑎𝑘 ,𝑏𝑘 ,𝜓𝑘〉 ∈ 𝔏𝐺����(𝐵𝑘) (9)

P6

A

D C

B

A

D C

P5

B

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 32

and for each 𝑘 = 1,2, … ,𝑚 − 1:

 𝜓𝑘 = 〈𝑏𝑘 , 𝑗𝑘 ,Θ𝑘 ,𝑎𝑘+1〉 (10)

for some Θ𝑘 ∈ 𝑃� , 𝑗𝑘 ∈ ℕ, then:

𝑒 = 〈𝜓0,𝑎0,𝑏𝑚,𝜓𝑚〉 ∈ 𝔏𝐺����(𝑃𝑖). (11)

c) (splitting rule) If for a production 𝑃𝑖 ∈ 𝑃 of
the form 𝑃𝑖:𝐴1𝐴2 …𝐴𝑛 → 𝛾, where
𝐴1,𝐴2, … ,𝐴𝑛 ∈ 𝑉𝑁 and 𝛾 ∈ (𝑉𝑇 ∪ 𝑉𝑁)∗ there
exists a label 𝑒 such that:

𝑒 = 〈𝜓,𝑎, 𝑏,𝜑〉 ∈ 𝔏𝐺����(𝑃𝑖) (12)

then:

 〈𝜓,𝑎, 𝑏, 〈𝑎, 1,𝑃𝑖 , 𝑏〉〉 ∈ 𝔏𝐺����(𝐴1),

〈〈𝑎, 𝑗 − 1,𝑃𝑖, 𝑏〉,𝑎, 𝑏, 〈𝑎, 𝑗,𝑃𝑖 , 𝑏〉〉 ∈ 𝔏𝐺�����𝐴𝑗�,

for 𝑗 = 2, … ,𝑛 − 1, and

 〈〈𝑎,𝑛 − 1,𝑃𝑖, 𝑏〉,𝑎, 𝑏,𝜑〉 ∈ 𝔏𝐺����(𝐴𝑛).
(13)

Example 2
Assume that the production rule 𝑃1:𝐴 → 𝑎
belongs to some grammar against which
we test the sentence 𝑎𝑎𝑏𝑎 and
the labelling for the terminal node contains
3 labels: 〈#; 1,1; #〉, 〈#; 2,2; #〉 and 〈#; 4,4; #〉.
After applying the labelling closure routine
the production rule 𝑃1 node and its predecessor,
the non-terminal symbol node 𝐴, also contains
those 3 labels – see Figure 7.

Fig. 7. Labelling example for production P1: A→a

Assume also that the grammar contains
the production rule 𝑃2: 𝑆 → 𝐴𝐵, the node 𝐵 is
labelled with 〈#; 3,3; #〉 and the node 𝐴 is
labelled with 〈#; 1,1; #〉, 〈#; 2,2; #〉 and
〈#; 4,4; #〉.

Fig. 8. Labelling example for production P2: S→AB

According to the joining rule the labelling
closure must contain also 〈#; 2,3; #〉 for 𝑃2
as 〈#; 2,2; #〉 and 〈#; 3,3; #〉 meet at the arrows
outgoing from 𝑃2. This is further copied to
the node 𝑆, according to the splitting rule
(without the actual splitting as there is only one
predecessor). See Figure 8. ▲

Example 3
Assume we have some grammar with
a production rule 𝑃3:𝐴𝐵 → 𝐶𝐷.
The symbol node D is labelled with
〈〈4,1,𝑃1, 5〉, 4,7, 〈6,1,𝑃2, 7〉〉 and the symbol
node 𝐶 is labelled with 〈#; 3,3; #〉 and
〈#; 3,5, 〈4,1,𝑃1, 5〉〉 – see Figure 9.

Fig. 9. Labelling example for production P3:

AB→CD

Two labels, namely 〈#; 3,5, 〈4,1,𝑃1, 5〉〉 and
〈〈4,1,𝑃1, 5〉, 4,7, 〈6,1,𝑃2, 7〉〉, meet the joining
criteria as they share second order label
〈4,1,𝑃1, 5〉 on their appropriate sides. Thus, they
are entitled to be joined together in
the production rule node 𝑃3 to produce
〈#; 3,7, 〈6,1,𝑃2, 7〉〉. Finally, according to
the splitting rule, this further produces labels
〈#; 3,7, 〈3,1,𝑃3, 7〉〉 and
〈〈3,1,𝑃3, 7〉, 3,7, 〈6,1,𝑃2, 7〉〉 for the nodes 𝐴
and 𝐵, respectively. ▲

The overall algorithm of labelling closure on
a 2nd order non-contracting grammar net is that:

A

D C

P3

B

〈#; 3,5, 〈4,1,𝑃1, 5〉〉
〈#; 3,3; #〉

〈〈4,1,𝑃1, 5〉, 4,7, 〈6,1,𝑃2, 7〉〉

〈#; 3,7, 〈6,1,𝑃2, 7〉〉

〈#; 3,7, 〈3,1,𝑃3, 7〉〉 〈〈3,1,𝑃3, 7〉, 3,7, 〈6,1,𝑃2, 7〉〉

S

B A

P2

〈#; 1,1; #〉
 〈#; 2,2; #〉
〈#; 4,4; #〉 〈#; 3,3; #〉

〈#; 2,3; #〉

〈#; 2,3; #〉

A

P1

a
〈#; 1,1; #〉
〈#; 2,2; #〉
〈#; 4,4; #〉

〈#; 1,1; #〉
〈#; 2,2; #〉
〈#; 4,4; #〉

〈#; 1,1; #〉
〈#; 2,2; #〉
 〈#; 4,4; #〉

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 33

a) It copies all the labels from the initial
labelling.

b) It joins two labels L and R, one from the left
and one from the right successor symbol
node of some production node, respectively,
if their second order labels match in that
the right second order label of L is the same
as the left second order label of R.
It means that 𝐿 = 〈𝜃𝐿 ,𝑎𝐿 ,𝑏𝐿 ,𝜂〉 and
𝑅 = 〈𝜂,𝑎𝑅 , 𝑏𝑅 ,𝜃𝑅〉 produce 〈𝜃𝐿 ,𝑎𝐿 ,𝑏𝑅 ,𝜃𝑅〉
in their common parent node.

c) It splits any label in a production node
having two predecessors into two labels.
The left predecessor receives a copy of
the left second order label and the two
numbers but with a new right second order
label. The same second order label is
received by the new label assigned to
the right predecessor as his left one second
order label, the two numbers and the right
second order label are copied from
the original label. It means that 〈𝜃𝐿 ,𝑎, 𝑏,𝜃𝑅〉
in a production node 𝑃𝑖 with two
predecessors (left and right ones) produces
𝐿 = 〈𝜃𝐿,𝑎, 𝑏, 〈𝑎, 1,𝑃𝑖 , 𝑏〉〉 for the left
predecessor and 𝑅 = 〈〈𝑎, 1,𝑃𝑖 , 𝑏〉, 𝑎, 𝑏,𝜃𝑅〉
for the right predecessor.

d) Copies all the labels unchanged from a node
to its unique predecessor, i.e. if there exists
one predecessor only.
Intuitively, splitting of a label into two,

giving them matching second order labels
〈𝑎, 1,𝑃𝑖 , 𝑏〉, expects that later another two labels
with matching second order label 〈𝑎, 1,𝑃𝑖, 𝑏〉,
derived from the above two ones, will join again.
The “left” label will grow further on its left-hand
side, while 〈𝑎, 1,𝑃𝑖 , 𝑏〉 as its right second order
label will “wait for meeting” another such
second order label as the left one of another label
that, possibly, could have “grown up” on its
right-hand side. It means that, applying
subsequently the splitting and joining rules,
〈𝜃𝐿,𝑎, 𝑏, 〈𝑎, 1,𝑃𝑖 , 𝑏〉〉 may grow up on the left to
some 〈𝜃𝐿′,𝑎′, 𝑏, 〈𝑎, 1,𝑃𝑖, 𝑏〉〉, where 𝑎′ ≤ 𝑎, and
〈〈𝑎, 1,𝑃𝑖 , 𝑏〉,𝑎, 𝑏,𝜃𝑅〉 may grow up to
〈〈𝑎, 1,𝑃𝑖 , 𝑏〉,𝑎, 𝑏′,𝜃𝑅′〉, where 𝑏 ≤ 𝑏′. Finally,
the two grown up labels may meet at some
production node to join again, thus producing
〈𝜃𝐿′,𝑎′, 𝑏′,𝜃𝑅′〉. It will be described later.

4. Derivation graph and net

Let us now construct a new kind of graph for
the sentence 𝜔, denoted by 𝐷𝜔(𝐺) – a derivation
graph. Assume first that the following chain of
direct derivations is the derivation of 𝜔 in 𝐺:

 𝑆 = 𝛾0 → 𝛾1 → 𝛾2 → ⋯ → 𝛾𝑚 = 𝜔. (14)

where 𝑖-th sentential form 𝛾𝑖, of length 𝐽𝑖, is:

 𝛾𝑖 = 𝛾𝑖,1𝛾𝑖,2 … 𝛾𝑖,𝐽𝑖 ∈ (𝑉𝑁 ∪ 𝑉𝑇)𝐽𝑖,
𝛾𝑖,𝑗 ∈ 𝑉𝑁 ∪ 𝑉𝑇 (15)

Without loss of generality we can assume that
there exist no two identical sentential forms in
the derivation of 𝜔, i.e.

 𝑖1 ≠ 𝑖2 ⇒ 𝛾𝑖1 ≠ 𝛾𝑖2 . (16)

Indeed, if there existed some 𝛾𝑎 = 𝛾𝑎1 = 𝛾𝑎2,
such that

 𝑆 = 𝛾0 → ⋯ → 𝛾𝑎1 → ⋯ → 𝛾𝑎2 … → 𝛾𝑚 = 𝜔
(17)

then the mid-derivation … → 𝛾𝑎1 → ⋯ → 𝛾𝑎2 →
⋯ could be just contracted to … → 𝛾𝑎 → ⋯,
hence

 𝛾0 → ⋯ → 𝛾𝑎 → ⋯ → 𝛾𝑚. (18)

It must be noted here, that there could exist more
than one correct derivation for the sentence 𝜔!
Until this is immaterial in this paper, let it be
any of them. Moreover, assume that the above
derivation does not contain any “weak cycle” in
the following sense:

Definition 2

Let 𝛾𝑖
𝑃𝑎𝑖+1�⎯⎯� 𝛾𝑖+1

𝑃𝑎𝑖+2�⎯⎯� …
𝑃𝑎𝑗
��𝛾𝑗 be a part of some

derivation from the 𝑖-th to the 𝑗-th step with
productions 𝑃𝑎𝑖+1 ,𝑃𝑎𝑖+2 , … ,𝑃𝑎𝑗. Assume that
a concatenation of 3 parts can be distinguished
in every sentential form: 𝛾𝑘 =
= 𝜑𝑘𝜒𝑘𝜓𝑘, 𝑘 ∈ 𝑖, 𝑗, 𝜑𝑘 ,𝜒𝑘 ,𝜓𝑘 ∈ (𝑉𝑁 ∪ 𝑉𝑇)∗,
possibly of length 0, where
𝜑𝑘 = 𝜑𝑘,1𝜑𝑘,2 …𝜑𝑘,|𝜑𝑘|, 𝜒 = 𝜒𝑘,1𝜒𝑘,2 …𝜒𝑘,|𝜒𝑘|,
𝜓𝑘 = 𝜓𝑘,1𝜓𝑘,2 …𝜓𝑘,|𝜓𝑘|. Assume also that the 3
parts 𝜑, 𝜒 or 𝜓 were chosen such that every

direct derivation 𝜑𝑘𝜒𝑘𝜓𝑘
𝑃𝑎𝑘+1�⎯⎯�𝜑𝑘+1𝜒𝑘+1𝜓𝑘+1

affects either 𝜒-part or one of the remaining
two ones – 𝜑- or 𝜓-part. That is, one of
the following cases occurs:
a) a production 𝑃𝑎𝑘+1:𝜒𝑘,𝑥+1𝜒𝑘,𝑥+1 …𝜒𝑘,𝑥+𝑚 →

𝜒𝑘+1,𝑦𝜒𝑘+1,𝑦+1 …𝜒𝑘+1,𝑦+𝑛 starts with
a subpart of the part 𝜒𝑘 and derives another
subpart within 𝜒𝑘+1; 𝜑𝑘 = 𝜑𝑘+1 and
𝜓𝑘 = 𝜓𝑘+1,

b) either 𝑃𝑎𝑘+1:𝜑𝑘,𝑥′+1𝜑𝑘,𝑥′+1 …𝜑𝑘,𝑥′+𝑚 →
𝜑𝑘+1,𝑦′+1𝜑𝑘+1,𝑦′+2 …𝜑𝑘+1,𝑦′+𝑛
(or 𝑃𝑎𝑘+1:𝜓𝑘,𝑥′′𝜓𝑘,𝑥′′+1 …𝜓𝑘,𝑥′′+𝑚 →

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 34

𝜓𝑘+1,𝑦′′+1𝜓𝑘+1,𝑦′′+2 …𝜓𝑘+1,𝑦′′+𝑛) starts
with a subpart of the part 𝜑𝑘 (or 𝜓𝑘) and
derives another subpart within 𝜑𝑘+1
(or 𝜓𝑘+1, respectively) while leaving
𝜒𝑘 = 𝜒𝑘+1.

Finally, assume that 𝜒𝑖 = 𝜒𝑗. If so, the sequence
of all the steps where the first of the above two
cases takes place is called weak cycle. ●

Observe that stripping a derivation from
weak cycles does not affect it as a whole. This is
because all the productions in some weak cycle
process sequential forms only within their
𝜒-parts, finally yielding the same 𝜒-part as
the initial one, while leaving other two parts 𝜑
and 𝜓 intact. In parallel, all of the other
productions still does not affect 𝜒-part within
the boundaries of such a weak cycle (between
𝑖-th and 𝑗-th steps). Observe also that
the productions from a weak cycle may be
interleaved with all the other productions within
the respective boundaries in more than one way,
provided that the order within each of the two
classes remains unchanged. This is the result of
the observation that the two classes are
completely independent within those boundaries.

Now, another restriction can be imposed
on the sentence derivations. Unless stated
otherwise, all the derivations considered in
this paper are assumed not to have weak cycles.
If a derivation contained any, it could be
shortened, of course, and the weak cycle would
disappear.

Definition 3
The following structure is a derivation graph
of the sentence 𝜔 over the grammar 𝐺 for
the derivation as defined in (14):

𝐷𝜔(𝐺) = 〈𝑉� ,𝐸� , 𝐿�,𝑀�〉 (19)
where:
𝑉� = 𝑉�𝑆 ∪ 𝑉�𝑃 – set of nodes, 𝑉�𝑆 ∩ 𝑉�𝑃 = ∅, where
𝑉�𝑆 represents some symbols and 𝑉�𝑃 represents
some productions of 𝐺,
𝐸� ⊆ 𝑉�𝑆 × 𝑉�𝑆 ∪ 𝑉�𝑆 × 𝑉�𝑃 ∪ 𝑉�𝑃 × 𝑉�𝑆 ⊆ 𝑉� × 𝑉�
– a set of directed edges where none of them
joins directly two nodes representing
productions,
𝐿� = 〈𝐿�0,𝐿�1, … , 𝐿�𝑚〉 – a sequence of layers,
each consisting of a sequence of nodes
𝐿�𝑖 = 〈𝛾�𝑖,1,𝛾�𝑖,2, … , 𝛾�𝑖,𝐽𝑖〉, where 𝛾�𝑖,𝑗 ∈ 𝑉�𝑆 for all
𝑖, 𝑗, so each node from 𝑉�𝑆 belongs to an exactly
one layer and all the nodes in a particular layer
are different; this is ordering information for
the nodes,

𝑀�:𝑉� → 𝑉𝑁 ∪ 𝑉𝑇 ∪ 𝑃 – a mapping from nodes to
the set of symbols (terminal and non-terminal
ones) and productions in the underlying
grammar 𝐺, such that

 ∀𝜁∈𝑉�𝑃𝑀�(𝜁) ∈ 𝑃,
 ∀𝜉∈𝑉�𝑆𝑀�(𝜉) ∈ 𝑉𝑁 ∪ 𝑉𝑇, (20)

subject to the following restrictions:
Let 𝛾𝑘 = 𝜑𝜒𝑘𝜓, 𝛾𝑘+1 = 𝜑𝜒𝑘+1𝜓, 𝑃𝑎𝑘+1:𝜒𝑘 →
𝜒𝑘+1, where 𝜑,𝜒𝑘 ,𝜒𝑘+1,𝜓 ∈ (𝑉𝑁 ∪ 𝑉𝑇)∗.
If 𝜑 = 𝛾1𝛾2 … 𝛾𝑥, 𝜒𝑘 = 𝛾𝑥+1𝛾𝑥+2 … 𝛾𝑥+𝑝,
𝜓 = 𝛾𝑥+𝑝+1𝛾𝑥+𝑝+2 … 𝛾𝐽𝑘 and 𝜒𝑘+1 =
= 𝛾′1𝛾′2 … 𝛾′𝑞 then

𝐿�𝑘 = 〈𝛾�𝑘,1, … , 𝛾�𝑘,𝑥 ,𝛾�𝑘,𝑥+1, … , 𝛾�𝑘,𝑥+𝑝,
𝛾�𝑘,𝑥+𝑝+1, … , 𝛾�𝑘,𝐽𝑘〉

𝐿�𝑘+1 =
= 〈𝛾�𝑘+1,1, … , 𝛾�𝑘+1,𝑥,𝛾�𝑘+1,𝑥+1, … ,
𝛾�𝑘+1,𝑥+𝑞 ,𝛾�𝑘+1,𝑥+𝑞+1, … , 𝛾�𝑘+1,𝐽𝑘+1〉

 (21)
and

𝑀��𝛾�𝑘,1� = 𝑀��𝛾�𝑘+1,1� = 𝛾1,
⋮

𝑀��𝛾�𝑘,𝑥� = 𝑀��𝛾�𝑘+1,𝑥� = 𝛾𝑥,

𝑀��𝛾�𝑘,𝑥+1� = 𝛾𝑥+1,
⋮

𝑀��𝛾�𝑘,𝑥+𝑝� = 𝛾𝑥+𝑝,

𝑀��𝛾�𝑘+1,𝑥+1� = 𝛾′1,
⋮

𝑀��𝛾�𝑘+1,𝑥+𝑞� = 𝛾′𝑞,

𝑀��𝛾�𝑘,𝑥+𝑝+1� = 𝑀��𝛾�𝑘+1,𝑥+𝑞+1� = 𝛾𝑥+𝑝+1,
⋮

𝑀��𝛾�𝑘,𝐽𝑘� = 𝑀��𝛾�𝑘+1,𝐽𝑘+1� = 𝛾𝐽𝑘. (22)

Of course,

𝐽𝑘+1 = 𝐽𝑘 − 𝑝 + 𝑞, (23)

must hold. Next, 𝑉�𝑃 = �𝑃�1,𝑃�2, … ,𝑃�𝑚� and

𝑀��𝑃�𝑘+1� = 𝑃𝑎𝑘+1 (24)

for 𝛾𝑘
𝑃𝑎𝑘+1�⎯⎯�𝛾𝑘+1. Finally, the set of edges

contains pairs of the form:

〈𝛾�𝑘,1,𝛾�𝑘+1,1〉 ∈ 𝐸�,
…

〈𝛾�𝑘,𝑥 ,𝛾�𝑘+1,𝑥〉 ∈ 𝐸�,

〈𝛾�𝑘,𝑥+1,𝑃�𝑘+1〉 ∈ 𝐸�,
…

〈𝛾�𝑘,𝑥+𝑝,𝑃�𝑘+1〉 ∈ 𝐸�,

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 35

〈𝑃�𝑘+1, 𝛾�𝑘+1,𝑥+1〉 ∈ 𝐸�,
…

〈𝑃�𝑘+1, 𝛾�𝑘+1,𝑥+𝑞〉 ∈ 𝐸�,

〈𝛾�𝑘,𝑥+𝑝+1,𝛾�𝑘+1,𝑥+𝑞+1〉 ∈ 𝐸�,
…

〈𝛾�𝑘,𝐽𝑘 , 𝛾�𝑘+1,𝐽𝑘+1〉 ∈ 𝐸�, (25)

for each 𝑘, where 𝑥 – as defined for 𝐿�𝑘 and 𝐿�𝑘+1
in (21). ●

The following figure illustrates a part of
derivation graph with two adjacent layers:

Fig. 10. Two neighbouring layers of a derivation

graph

The general idea of connecting the nodes with
arrows is as follows:
a) A node 𝛾�𝑘,𝑙 in the 𝑘-th layer that

corresponds to a symbol being part of
the left side of the production rule 𝑃𝑎𝑘+1
in the (𝑘 + 1)-th derivation step points to
the production rule node following the layer,
i.e. this is a case where 𝑥 + 1 ≤ 𝑙 ≤ 𝑥 + 𝑝
(note that 𝑥 depends on 𝑘).

b) A node 𝛾�𝑘,𝑙 that does not corresponds to
a symbol being part of the left side of
the production rule 𝑃𝑎𝑘+1 points to
the corresponding node in the next layer, this
a the case 𝑙 ≤ 𝑥 or 𝑥 + 𝑝 + 1 ≤ 𝑙.
Moreover, both such nodes maps to the same
symbol in the underlying grammar 𝐺.

c) The node 𝑃�𝑘+1 between the layers 𝑘-th
and (𝑘 + 1)-th points to the nodes in
the (𝑘 + 1)-th layer that correspond to
the right-hand side symbols of
the production rule 𝑃𝑎𝑘+1 in the (𝑘 + 1)-th
derivation step.

Example 4
Assume that some grammar 𝐺 consists of the
following production rules: 𝑃1: 𝑆 → 𝐴𝐵,
𝑃2:𝐴 → 𝑌𝑋, 𝑃3:𝑋𝐵 → 𝐵𝑍, 𝑃4:𝑍 → 𝐵, 𝑃5:𝐵 →

𝑋, 𝑃6:𝑌 → 𝑦, 𝑃7:𝑋 → 𝑥 and 𝑃8:𝐵 → 𝑏.
Consider a possible derivation of
the sentence 𝑦𝑥𝑏, for example
𝑆
𝑃1→ 𝐴𝐵

𝑃2→𝑌𝑋𝐵
𝑃3→𝑌𝐵𝑍

𝑃5→𝑌𝑋𝑍
𝑃6→𝑦𝑋𝑍

𝑃4→𝑦𝑋𝐵
𝑃7→

𝑃7→𝑦𝑥𝐵
𝑃8→𝑦𝑥𝑏. The obtained derivation graph is

depicted in Figure 11.
Inside each node there is written a value

that the node maps to in the grammar 𝐺.
For instance, 𝑀��𝑃�6� = 𝑃4 and 𝑀��𝛾�8,1� = 𝑦.

The derivation steps represented by 𝑃�3, 𝑃�4
and 𝑃�6 form a weak cycle in the derivation.
The subnet starting in the layer 2 with 2 nodes
mapping to 𝑋 and 𝐵 ends up with another two
nodes in the layer 6 mapping to exactly the same
𝑋 and 𝐵. This subnet is absolutely independent
of the other part of the derivation net. No step
in this subnet could affect the steps outside it and
vice versa. Hence, the steps in question can be
omitted without affecting the whole derivation.
Thus, a reduced derivation graph can be
obtained – as depicted in Figure 12 (nodes are
reindexed). The derivation itself shortens to
𝑆
𝑃1→ 𝐴𝐵

𝑃2→𝑌𝑋𝐵
𝑃6→𝑦𝑋𝐵

𝑃7→𝑦𝑥𝐵
𝑃8→𝑦𝑥𝑏.

 … … …

…

…

… …

𝛾�𝑘,1

𝛾�𝑘,2

… …

𝛾�𝑘+1,1 𝛾�𝑘+1,𝐽𝑘+1 𝛾�𝑘+1,𝑥+1 𝛾�𝑘+1,𝑥+𝑞

𝛾�𝑘,𝐽𝑘 𝛾�𝑘,𝑥+𝑝 𝛾�𝑘,𝑥+1

𝑃�𝑘+1

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 36

Fig. 11. A derivation graph example

Fig. 12. A derivation graph reduction example

▲

Lemma 1
The derivation graph 𝐷𝜔(𝐺) is planar.

Proof
Indeed, the first layer of nodes (consisting of
the starting node only) is planar by its nature.
Assume now that the first 𝑘 layers, with
production nodes between each two adjacent of
them, form a planar graph, say 𝐺𝑘. Assume also
that no arrow of 𝐺𝑘 protrudes from the area
limited by the “very outer” nodes of 𝐺𝑘 and that
the nodes of the 𝑘-th layer are amongst those
very outer ones. Now, extend 𝐺𝑘 to 𝐺𝑘+1
by adding the production node 𝑃�𝑘+1, symbol
nodes 𝛾𝑘+1,1,𝛾𝑘+1,2, … , 𝛾𝑘+1,𝐽𝑘+1 and all
the arrows between them, as depicted in figure
10. Next, join them to 𝛾𝑘,1,𝛾𝑘,2, … , 𝛾𝑘,𝐽𝑘 with
appropriate arrows. Since 𝐺𝑘 is planar and
the new nodes and arrows, which itself would
form a planar graph, are connected to “outer”
nodes 𝛾𝑘+1,1,𝛾𝑘+1,2, … , 𝛾𝑘+1,𝐽𝑘, not by-passed
by any arrow of 𝐺𝑘, the resulting 𝐺𝑘+1 is planar.
Moreover, now all the nodes of the (𝑘 + 1)-th
layer are those amongst the most outer ones.
By induction, we conclude as in the lemma. ∎

S

B A

P1

P2

Y X B

P6

y

y B x

P7

y x b

P8

𝛾�0,1

𝛾�1,1 𝛾�1,2

𝛾�2,1
𝛾�2,2 𝛾�2,3

𝛾�3,1

𝛾�4,1
𝛾�4,2 𝛾�4,3

𝛾�5,1
𝛾�5,2 𝛾�5,3

𝑃�1

𝑃�2

𝑃�3

𝑃�4

𝑃�5

X B
𝛾�3,2 𝛾�3,3

S

B A

P1

P2

Y X B

Y B Z

P3

P5

X Z Y

P6

y X Z

y X B

y B x

P4

P7

y x b

P8

𝛾�0,1

𝛾�1,1 𝛾�1,2

𝛾�2,1 𝛾�2,2
𝛾�2,3

𝛾�3,2
𝛾�3,1

𝛾�3,3

𝛾�4,1
𝛾�4,2 𝛾�4,3

𝛾�5,1
𝛾�5,2 𝛾�5,3

𝛾�6,1
𝛾�6,2 𝛾�6,3

𝛾�7,1
𝛾�7,2 𝛾�7,3

𝛾�8,1
𝛾�8,2 𝛾�8,3

𝑃�1

𝑃�2

𝑃�3

𝑃�4

𝑃�5

𝑃�6

𝑃�7

𝑃�8

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 37

Similarly to the definition of grammar net,
that extended the grammar graph with some
labelling, we can now extend the definition of
derivation graph to the derivation net.
A labelling of the form

𝔏�𝐺𝜔:𝑉� → 𝐸𝐼 (26)

over the derivation graph 𝐷𝜔(𝐺) together with
𝐷𝜔(𝐺) itself is a derivation net.

Each node in the derivation graph has
a label assigned to it, thus forming a derivation
net. The interpretation is similar to the labelling
of grammar graphs except that it allows each
node to have exactly one label. Similar are also
the rules of deriving new labels from those
already existing, except that:
a) new labels are successively derived upwards

layer by layer, starting from the last one,
b) the labels derived in the (𝑘 − 1)-th layer are

based only on the labels from the 𝑘-th layer,
c) the labels in the last layer are chosen

arbitrarily.
It will be shown in more details in the next
sections along with a possible way to do such
labelling, i.e. assigning exactly one label to each
node.

Let us now define another concept –
quotient derivation net. Let a pair 〈𝐷𝜔(𝐺),𝔏�𝐺𝜔〉
of a derivation graph and a labelling on it be
a derivation net. The quotient derivation net
over a mapping 𝑀� is a net constructed by
contracting those nodes from 𝐷𝜔(𝐺) that are
mapped by 𝑀� to the same symbol or production
in 𝐺. It is worth noting here that the derivation
graph 𝐷𝜔(𝐺), and hence a derivation net defined
on it, holds an implicit information on
the incoming and outgoing arrows in the order of
nodes in each layer. Likewise in the grammar
graph, it is required that the order of all
the arrows incoming and outgoing from
production-related nodes after the contraction is
preserved. Thus, the quotient derivation net is
defined as a pair 〈𝐺�𝜔,𝑀� ,𝔏𝐺�𝜔,𝑀�

〉 where

𝐺�𝜔,𝑀� = 〈𝑉�𝜔,𝑀� ,𝛤�𝑆,𝜔,𝑀� ,𝛤�𝑁,𝜔,𝑀�
−1 〉 (27)

is a graph of a structure similar to that
of the grammar graph and 𝔏𝐺�𝜔,𝑀�

 is a labelling
over it. The above graph is constructed
as follows:

𝑉�𝜔,𝑀� = 𝑉�𝑆,𝜔,𝑀� ∪ 𝑉�𝑃,𝜔,𝑀� (28)

is the set of nodes in 𝐺�𝜔,𝑀� where

𝑉�𝑆,𝜔,𝑀� = �𝑣 ∈ 𝑉𝑁 ∪ 𝑉𝑇 | ∃𝑣�∈𝑉�𝑀�(𝑣�) = 𝑣� (29)

is the subset of those contracted nodes that
correspond to symbols in the grammar 𝐺 and

𝑉�𝑃,𝜔,𝑀� = �𝑝 ∈ 𝑃 | ∃𝑣�∈𝑉�𝑀�(𝑣�) = 𝑝� (30)

is, accordingly, the subset of those that
correspond to productions in 𝐺. Likewise in
the definition of grammar graph, the nodes are
identified with productions and symbols in
the underlying grammar as this should never
lead to ambiguity. Next,

𝛤�𝑆,𝜔,𝑀� :𝑉�𝑃,𝜔,𝑀� → �𝑉�𝑆,𝜔,𝑀��
+ (31)

is a mapping that assigns ordered sequences of
symbol-related nodes to each production-related
ones. Every sequence represents the order in
which arrows outgoing from a production node
point to symbol nodes. Similarly,

𝛤�𝑁,𝜔,𝑀�
−1 :𝑉�𝑃,𝜔,𝑀� → �𝑉�𝑆,𝜔,𝑀��

+ (32)

is a “reversed” mapping for arrows incoming
into the production-related nodes and represent
their order. Moreover, for all 𝑃𝑖 ∈ 𝑉�𝑃,𝜔,𝑀�
of the form 𝑃𝑖:𝜇1𝜇2 …𝜇𝑚 → 𝛾1𝛾2 … 𝛾𝑛 we have

𝛤�𝑆,𝜔,𝑀�(𝑃𝑖) = 〈𝛾1,𝛾2, … , 𝛾𝑛〉 (33)
and

𝛤�𝑁,𝜔,𝑀�
−1 (𝑃𝑖) = 〈𝜇1, 𝜇2, … , 𝜇𝑚〉. (34)

The above formulas are similar to that of

the grammar graph, compare (2) and (3). We can
always contract the underlying derivation graph
(or net) in this way because all the production
nodes in 𝐷𝜔(𝐺) that maps with 𝑀� to the same
production in 𝐺 must have predecessors and
successors that, in their order, map to the same
symbols in 𝐺. 𝐷𝜔(𝐺) always correspond to
a correct derivation of 𝜔, so the graph itself must
have the above property.

On the other hand, the contracted graph
does not contain any arrow between two
different symbol nodes. This, in turn, is a result
of the fact that the only such arrows in
the underlying derivation graph (or net) are
those that link two corresponding nodes in
adjacent layers. Both nodes in such pairs,
though, always map with 𝑀� to the same symbol
in 𝐺. Thus, 𝛤�𝑆,𝜔,𝑀� and 𝛤�𝑁,𝜔,𝑀�

−1 cover all
the necessary arrows in 𝐺�𝜔,𝑀� .

Due to its definition, production related
nodes in 𝐺�𝜔,𝑀� are also production related nodes
in 𝐺�. So do the symbol nodes and, moreover,
the predecessors and successors of each
production related node, along with their orders,
are the same as in 𝐺�. Thus, we obtain
the following result:

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 38

Corollary 1
𝐺�𝜔,𝑀� is a subgraph of 𝐺�.

As regards to the labelling 𝔏𝐺�𝜔,𝑀�

, this is defined
as follows:

𝔏𝐺�𝜔,𝑀�
(𝑣) = �𝔏�𝐺𝜔(𝑣′) | 𝑀�(𝑣′) = 𝑣�. (35)

All the nodes in 𝐷𝜔(𝐺) that map with 𝑀�
to the same node in 𝐺�𝜔,𝑀� “transfer” their labels
into the set of labels assigned to the resulting
contracted node. The above definitions of
the contracted derivation graph and the labelling
on it both form the definition of the quotient
derivation net.

5. Membership problem

Let 𝔏𝐺𝜔 denote a “minimal” labelling over 𝐺� with
respect to the sentence 𝜔 = 𝑤1𝑤2 …𝑤𝑝 ∈ (𝑉𝑇)𝑝
of length 𝑝 such that

𝔏𝐺𝜔(𝑤𝑙) = {〈#; 𝑙, 𝑙; #〉} (36)
and

 𝔏𝐺𝜔(𝑠) = ∅ (37)

where 𝑠 ≠ 𝑤𝑙, for all 𝑙 = 1,2, … ,𝑝. Every label
from the initial labelling defined above can be
unambiguously assigned to a particular node in
the last (𝑧-th) layer of 𝐷𝜔(𝐺). It means that
〈#; 1,1; #〉, 〈#; 2,2; #〉, …, 〈#; 𝐽𝑧, 𝐽𝑧; #〉, where
𝐽𝑧 = 𝑝, correspond to the nodes 𝛾�𝑧,1, 𝛾�𝑧,2, …,
𝛾�𝑧,𝐽𝑧, respectively. So, the labelling 𝔏�𝐺𝜔 is
correctly defined for this layer, i.e.

𝔏�𝐺𝜔�𝛾�𝑧,𝑙� = 〈#; 𝑙, 𝑙; #〉 (38)

Now, the following rules applied recursively to
the nodes of 𝐷𝜔(𝐺) layer by layer will correctly
define all the values of 𝔏�𝐺𝜔:
a) (rewriting rule) If a symbol node 𝛾�𝑖+1,𝑗′ is
the direct successor of another symbol node 𝛾�𝑖,𝑗,
i.e. 〈𝛾�𝑖,𝑗, 𝛾�𝑖+1,𝑗′〉 ∈ 𝐸�, then we let 𝔏�𝐺𝜔�𝛾�𝑖,𝑗� =
= 𝔏�𝐺𝜔�𝛾�𝑖+1,𝑗′�. Recall that this is possible only if
both of them maps with 𝑀� to the same symbol
in 𝐺 and they correspond to those parts of 𝛾𝑖 and

𝛾𝑖+1 in the derivation step 𝛾𝑖
𝑃𝑎𝑖+1�⎯⎯�𝛾𝑖+1 that are

not affected by 𝑃𝑎𝑖+1. Moreover, after
the contraction to a quotient derivation net, both
nodes will reduce to the same node with one
label.
b) (joining rule) If symbol nodes 𝛾�𝑖+1,𝑥+1,
𝛾�𝑖+1,𝑥+2, …, 𝛾�𝑖+1,𝑥+𝑚 are all direct successors
(in the above order) of a production node 𝑃�𝑖+1
and the labels assigned to them by 𝔏�𝐺𝜔 are
〈𝜓𝑥+1,𝑎𝑥+1,𝑏𝑥+1,𝜑𝑥+1〉,
〈𝜓𝑥+2,𝑎𝑥+2,𝑏𝑥+2,𝜑𝑥+2〉,

⋮
〈𝜓𝑥+𝑚,𝑎𝑥+𝑚,𝑏𝑥+𝑚,𝜑𝑥+𝑚〉, respectively, then
assign 〈𝜓𝑥+1,𝑎𝑥+1,𝑏𝑥+𝑚,𝜑𝑥+𝑚〉 to 𝑃�𝑖+1, i.e. we
let 𝔏�𝐺𝜔�𝑃�𝑖+1� = 〈𝜓𝑥+1,𝑎𝑥+1,𝑏𝑥+𝑚,𝜑𝑥+𝑚〉.
c) (splitting rule) If symbol nodes 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2,
…, 𝛾�𝑖,𝑥+𝑚 are all direct predecessors
(in the above order) of a production node 𝑃�𝑖+1
that is assigned a label 〈𝜓, 𝑎, 𝑏,𝜑〉
then assign the labels 〈𝜓,𝑎, 𝑏, 〈𝑎, 1, �̂�, 𝑏〉〉,
〈〈𝑎, 1, �̂�, 𝑏〉,𝑎, 𝑏, 〈𝑎, 2, �̂�, 𝑏〉〉,
〈〈𝑎, 2, �̂�, 𝑏〉,𝑎, 𝑏, 〈𝑎, 3, �̂�, 𝑏〉〉,
⋮
〈〈𝑎,𝑚 − 2, �̂�, 𝑏〉,𝑎, 𝑏, 〈𝑎,𝑚− 1, �̂�, 𝑏〉〉,
〈〈𝑎,𝑚 − 1, �̂�, 𝑏〉,𝑎, 𝑏,𝜑〉,
where �̂� = 𝑀��𝑃�𝑖+1�, to those nodes,
respectively.

Definition 4
Let 𝛾�𝑖,𝑗, 𝛾�𝑖,𝑗+1 be two neighbouring symbol
nodes in the i-th layer of some derivation net.
Let 〈𝜓𝑖,𝑗,𝑎𝑖,𝑗, 𝑏𝑖,𝑗,𝜑𝑖,𝑗〉 and
〈𝜓𝑖,𝑗+1,𝑎𝑖,𝑗+1,𝑏𝑖,𝑗+1,𝜑𝑖,𝑗+1〉 be two labels
assigned to them. The property of neighbouring
second order labels equality holds, if 𝜑𝑖,𝑗 =
= 𝜓𝑖,𝑗+1. ●

Lemma 2
For each two neighbouring labels, in every layer,
the neighbouring second order labels equality
holds. Moreover, the left second order label in
the first node in each layer is the same through
all the layers, so do the right second order labels
of the last nodes.

Proof
First, observe that the lemma is true for the last
layer – recall (36). Next, assume, that
the above property holds for the (𝑖 + 1)-th layer.
Let 𝛾�𝑖,1, 𝛾�𝑖,2, …, 𝛾�𝑖,𝑥 be direct predecessors of
𝛾�𝑖+1,1, 𝛾�𝑖+1,2, …, 𝛾�𝑖+1,𝑥. It is easily seen that
the very first second order labels put on the left
are the same. Since 𝔏�𝐺𝜔�𝛾�𝑖,𝑙� = 𝔏�𝐺𝜔�𝛾�𝑖+1,𝑙�, for
𝑙 = 1, 2, … , 𝑥, the property of neighbouring
second order labels equality still holds within
those first 𝑥 nodes in the 𝑘-th layer. Let now
𝛾�𝑖+1,𝑥+1, 𝛾�𝑖+1,𝑥+2, …, 𝛾�𝑖+1,𝑥+𝑞 be all the direct
successors (in that order) of 𝑃�𝑖+1. According to
the joining rule for the derivation nets the left
second order label of 𝑃�𝑖+1 is the same as the left
second order label of 𝛾�𝑖+1,𝑥+1 and the right
second order label of 𝑃�𝑖+1 is the same as
the right second order label of 𝛾�𝑖+1,𝑥+𝑞.
Let 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, …, 𝛾�𝑖,𝑥+𝑝 be directs
predecessors of 𝑃�𝑖+1. Now, according to

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 39

the splitting rule for the derivation nets, the left
second order label of 𝛾�𝑖,𝑥+1 is the same as
the left second order label of 𝑃�𝑖+1 and hence
the same as the left one of 𝛾�𝑖+1,𝑥+1.
Since the neighbouring second order labels
equality holds by inductive hypothesis for
the pair 𝛾�𝑖+1,𝑥 and 𝛾�𝑖+1,𝑥+1 we deduce that
the same property holds for the pair 𝛾�𝑖,𝑥 and
𝛾�𝑖,𝑥+1. The splitting rule also imposes
the neighbouring second order labels equality on
each neighbouring pair within 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, …,
𝛾�𝑖,𝑥+𝑝. The right second order label of 𝛾�𝑖,𝑥+𝑝
is the same as that of 𝑃�𝑖+1 and hence – that
of 𝛾�𝑖+1,𝑥+𝑞. By inductive hypothesis,
the neighbouring second order labels equality
holds for the pair 𝛾�𝑖+1,𝑥+𝑞 and 𝛾�𝑖+1,𝑥+𝑞+1, from
which it can be deduced that this property
also holds for the pair 𝛾�𝑖,𝑥+𝑝 and 𝛾�𝑖,𝑥+𝑝. Finally,
since 𝛾�𝑖,𝑥+𝑝+1, 𝛾�𝑖,𝑥+𝑝+2, …, 𝛾�𝑖,𝐽𝑖 are all
the direct predecessors of 𝛾�𝑖+1,𝑥+𝑞+1,
𝛾�𝑖+1,𝑥+𝑞+2, …, 𝛾�𝑖+1,𝐽𝑖+1, respectively, and they
inherit the labels according to the rewriting rule,
the property holds also for each neighbouring
pair within 𝛾�𝑖,𝑥+𝑝+1, 𝛾�𝑖,𝑥+𝑝+2, …, 𝛾�𝑖,𝐽𝑖. Thus, by
induction, it can be deduced that the property of
neighbouring second order labels equality holds
within each layer of the derivation net. The very
last second order labels in each layer are
the same because they are rewritten.

In a special case where 𝑥 = 0 it is easily
seen that the left second order labels of the first
nodes in the two layers are the same indeed.
Symmetrically, it is also easily seen for the case
where 𝑃�𝑖+1 is incident with both last nodes in
those layers, i.e. for 𝑥 = 𝐽𝑖+1 − 𝑞 + 1 =
= 𝐽𝑖 − 𝑝 + 1. ∎

Example 5
Let the grammar 𝐺 be as in
the example 4. Figure 13 shows the layers of
the derivation graph for sentence 𝑦𝑥𝑥. The nodes
in each layer are labelled with subsequent
generations of labels, some of which are just
copied from the previously labelled layer
(rewriting rule). Figure 14, on the other hand,
shows graph 𝐺’, a subgraph of 𝐺, that was
obtained after the contraction of the derivation
graph. Its labelling is only a part of how can 𝐺
be labelled. ▲

Fig. 13. An example of labels on a derivation graph

Fig. 14. An example of derivation graph contraction

x
b

y

P8
P7

X

P6

Y

P2

A

P1

S

P3

Z

P5

𝐺’

〈#; 1,1; #〉

〈#; 2,2; #〉
〈#; 3,3; #〉

〈#; 3,3; #〉

〈#; 3,3; #〉

〈#; 3,3; #〉

〈#; 1,1; #〉

〈#; 1,1; #〉

〈#; 1,2; #〉

〈#; 2,2; #〉

〈#; 2,2; #〉

〈#; 3,3; #〉

〈#; 1,3; #〉

〈#; 1,3; #〉

〈#; 1,2; #〉

P4

B

S

B A

P1

P2

Y X B

P6

y

y B x

P7

y x x

P5

〈#; 1,1; #〉

X B

〈#; 2,2; #〉 〈#; 3,3; #〉

〈#; 1,1; #〉 〈#; 2,2; #〉

〈#; 3,3; #〉

〈#; 3,3; #〉

〈#; 2,2; #〉

〈#; 3,3; #〉

〈#; 3,3; #〉

〈#; 3,3; #〉

〈#; 2,2; #〉

〈#; 2,2; #〉

〈#; 1,1; #〉

〈#; 1,1; #〉

〈#; 1,1; #〉

〈#; 1,2; #〉

〈#; 1,2; #〉

〈#; 1,3; #〉

〈#; 1,3; #〉

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 40

Lemma 3
If the label assigned to some node in 𝐷𝜔(𝐺),
according to the labelling closure routine for
derivation graphs, is of the form 〈𝜓,𝑎, 𝑏,𝜑〉,
then 𝑎 is the index of the leftmost and 𝑏 is
the index of the rightmost node in the last layer
that are accessible via directed paths from
this labelled node. Moreover, for a symbol node
𝛾�𝑖,𝑗 with assigned label 〈𝜓𝑗, 𝑎𝑗, 𝑏𝑗,𝜑𝑗〉 and
a symbol node 𝛾�𝑖,𝑙 with assigned label
〈𝜓𝑙 ,𝑎𝑙 , 𝑏𝑙 ,𝜑𝑙〉, where 𝑗 < 𝑙, we have 𝑎𝑗 ≤ 𝑎𝑙 and
𝑏𝑗 ≤ 𝑏𝑙.

Proof
The property is obvious for the last layer as it
results from the initial labelling structure. Now,
assume that the property holds for all
the nodes in the (𝑖 + 1)-th layer. The nodes 𝛾�𝑖,1
through 𝛾�𝑖,𝑥 have only one successor each, i.e.
𝛾�𝑖+1,1 through 𝛾�𝑖+1,𝑥, respectively, and inherit
their labels. Hence, their labels still hold
the property in question. Similarly, the nodes
𝛾�𝑖,𝑥+𝑝+1 through 𝛾�𝑖,𝐽𝑖 inherit the labels from
their single successors 𝛾�𝑖+1,𝑥+𝑞+1 through
𝛾�𝑖+1,𝐽𝑖+1, respectively, and the property in
question holds also within this group. Now,
the production node 𝑃�𝑖+1 between the two layers
also receives a label of the form
〈𝜓𝑖+1

(𝑃) ,𝑎𝑖+1
(𝑃) ,𝑏𝑖+1

(𝑃) ,𝜑𝑖+1
(𝑃) 〉. It results from

the joining rule for the derivation nets that
𝑎𝑖+1

(𝑃) = min�𝑎𝑖+1,𝑥+1,𝑎𝑖+1,𝑥+2, … ,𝑎𝑖+1,𝑥+𝑞�
𝑏𝑖+1

(𝑃) = max�𝑏𝑖+1,𝑥+1,𝑏𝑖+1,𝑥+2, … , 𝑏𝑖+1,𝑥+𝑞�
 (39)

where 𝑎𝑖+1,𝑥+𝑢, 𝑏𝑖+1,𝑥+𝑢, are determined by
the labels 〈𝜓𝑖+1,𝑥+𝑢, 𝑎𝑖+1,𝑥+𝑢, 𝑏𝑖+1,𝑥+𝑢,
 𝜑𝑖+1,𝑥+𝑢 assigned to 𝛾𝑖+1,𝑥+𝑢, for
𝑢 = 1,2, … , 𝑞. Indeed, by the inductive
hypothesis, 𝑎𝑖+1

(𝑃) = 𝑎𝑖+1,𝑥+1 ≤ 𝑎𝑖+1,𝑥+2 ≤ ⋯ ≤
𝑎𝑖+1,𝑥+𝑞 and 𝑏𝑖+1,𝑥+1 ≤ 𝑏𝑖+1,𝑥+2 ≤ ⋯ ≤
𝑏𝑖+1,𝑥+𝑞 = 𝑏𝑖+1

(𝑃) . Since all the directed paths that
start in 𝑃�𝑖+1 and end up in the last layer go
through one of 𝛾�𝑖+1,𝑥+1, 𝛾�𝑖+1,𝑥+2, …, 𝛾�𝑖+1,𝑥+𝑞,
the property in question holds for 𝑃�𝑖+1 and its
label. Finally, all the direct predecessors of 𝑃�𝑖+1,
say 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, …, 𝛾�𝑖,𝑥+𝑝, are assigned
labels 〈𝜓𝑖,𝑥+𝑣,𝑎𝑖+1

(𝑃) ,𝑏𝑖+1
(𝑃) ,𝜑𝑖,𝑥+𝑣〉, 𝑣 = 1, 2, … ,𝑝.

Since the pair of values 𝑎𝑖+1
(𝑃) and 𝑏𝑖+1

(𝑃)
are inherited by them from 𝑃�𝑖+1 and the only
paths starting from them and ending up
in the last layer go through 𝑃�𝑖+1, the property
holds for them as well. Thus, by induction,
all the layers of nodes have the property stated in
the lemma. ∎

Corollary 2
〈#; 1, |𝜔|; #〉 is the root label in
a derivation net 〈𝐷𝜔(𝐺),𝔏�𝐺𝜔〉, i.e. assigned to
the “starting” node 𝑆, if the net is initially
labelled as in (38). This is a direct result from
the last two lemmas. The left and right second
order labels are inherited from the leftmost and
the rightmost second order labels in the last
layer, while 1 and |𝜔| are, of course, the indices
of the first and the last symbol in |𝜔| and hence
the indices of the first and the last node in
the last layer.

Lemma 4
Let 𝜔 be any correct sentence in 𝐺 and 𝐷𝜔(𝐺)
with 𝔏�𝐺𝜔 be its derivation net, where the labelling
𝔏�𝐺𝜔 was generated from the initial labelling using
rewriting, joining and splitting rules for
derivation nets. If 𝔏�𝐺𝜔(𝑣) = 〈𝜓,𝑎, 𝑏,𝜑〉 for some
node 𝑣, then 〈𝜓,𝑎, 𝑏,𝜑〉 ∈ 𝔏𝐺𝜔���� �𝑀�(𝑣)�. In other
words, 𝔏𝐺�𝜔,𝑀�

≼ 𝔏𝐺𝜔����, where 𝐺�𝜔,𝑀� with 𝔏𝐺�𝜔,𝑀�
 is

the quotient derivation net of 𝐷𝜔(𝐺) with 𝔏�𝐺𝜔
over 𝑀�.

Proof
First, observe that for the last (𝑘-th) layer
𝔏�𝐺𝜔�𝛾�𝑘,𝑗� = 〈#; 𝑗, 𝑗; #〉 and this belongs to
𝔏𝐺𝜔 �𝑀��𝛾�𝑘,𝑗��, for 𝑗 = 1,2, … , 𝐽𝑘 and 𝐽𝑘 = |𝜔|.
Of course, 𝔏𝐺𝜔���� ≽ 𝔏𝐺𝜔, so 〈#; 𝑗, 𝑗; #〉 ∈
∈ 𝔏𝐺𝜔���� �𝑀��𝛾�𝑘,𝑗�� as well. Assume now that

𝔏�𝐺𝜔�𝛾�𝑖,𝑗� ∈ 𝔏𝐺𝜔���� �𝑀��𝛾�𝑖,𝑗��, for all 𝑗 = 1,2, … , 𝐽𝑖,
where 𝑖 is an index of some layer in 𝐷𝜔(𝐺).
Let 𝛾�𝑖,𝑥𝑖+1, 𝛾�𝑖,𝑥𝑖+2,…, 𝛾�𝑖,𝑥𝑖+𝑞𝑖 be all the direct
successors (in that order) of 𝑃�𝑖 and
〈𝜓𝑖,𝑥𝑖+1,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+1,𝜑𝑖,𝑥𝑖+1〉,
〈𝜓𝑖,𝑥𝑖+2,𝑎𝑖,𝑥𝑖+2,𝑏𝑖,𝑥𝑖+1,𝜑𝑖,𝑥𝑖+2〉,
…
〈𝜓𝑖,𝑥𝑖+𝑞𝑖 ,𝑎𝑖,𝑥𝑖+𝑞𝑖 ,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖,𝑥𝑖+𝑞𝑖〉 be their
labels, respectively. Recall that the above labels
hold the neighbouring second order label
equality property, i.e. 𝜑𝑖,𝑥𝑖+1 = 𝜓𝑖,𝑥𝑖+2,
 𝜑𝑖,𝑥𝑖+2 = 𝜓𝑖,𝑥𝑖+3, … , 𝜑𝑖,𝑥𝑖+𝑞𝑖−1 = 𝜓𝑖,𝑥𝑖+𝑞𝑖.
The joining rule for the derivation nets assigns
〈𝜓𝑖,𝑥𝑖+1, 𝑎𝑖,𝑥𝑖+1, 𝑏𝑖,𝑥𝑖+𝑞𝑖 , 𝜑𝑖,𝑥𝑖+𝑞𝑖〉 to 𝑃�𝑖.
On the other hand, 〈𝜓𝑖,𝑥𝑖+𝑗, 𝑎𝑖,𝑥𝑖+𝑗, 𝑏𝑖,𝑥𝑖+𝑗,
𝜑𝑖,𝑥𝑖+𝑗〉 ∈ 𝔏𝐺

𝜔���� �𝑀��𝛾�𝑖,𝑥𝑖+𝑗��, for 𝑗 = 1,2, … , 𝐽𝑖.
Since 𝑀��𝛾�𝑖,𝑥𝑖+1�, 𝑀��𝛾�𝑖,𝑥𝑖+2�, …, 𝑀��𝛾�𝑖,𝑥𝑖+𝑞𝑖�
are direct successors (in that order) of 𝑀��𝑃�𝑖�
in 𝐺�, the joining rule for grammar nets produces
a new label (of course, unless it has already
existed) for 𝑀��𝑃�𝑖�. This is 〈𝜓𝑖,𝑥𝑖+1, 𝑎𝑖,𝑥𝑖+1,

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 41

𝑏𝑖,𝑥𝑖+𝑞𝑖 , 𝜑𝑖,𝑥𝑖+𝑞𝑖〉 and is equal to 𝔏�𝐺𝜔�𝑃�𝑖�.
Hence, 𝔏�𝐺𝜔�𝑃�𝑖� ∈ 𝔏𝐺𝜔���� �𝑀��𝑃�𝑖�� holds. Finally, let
𝛾�𝑖−1,𝑥𝑖−1+1, 𝛾�𝑖−1,𝑥𝑖−1+2, … , 𝛾�𝑖−1,𝑥𝑖−1+𝑝𝑖−1 be
all the direct predecessors (in that order) of 𝑃�𝑖.
According to the splitting rule for derivation nets
those nodes are assigned labels
〈𝜓𝑖−1,𝑥𝑖−1+1,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖−1,𝑥𝑖−1+1〉,
〈𝜓𝑖−1,𝑥𝑖−1+2,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖−1,𝑥𝑖−1+2〉,
…
〈𝜓𝑖−1,𝑥𝑖−1+𝑝𝑖−1 ,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖−1,𝑥𝑖−1+𝑝𝑖−1〉,
respectively. On the other hand, the splitting rule
for the grammar nets adds exactly the same
labels to the predecessors of 𝑀��𝑃�𝑖� in 𝐺�,
preserving, of course, their respective order.
All the other nodes in the (𝑖 − 1)-th layer of
𝐷𝜔(𝐺) inherit their labels from respective nodes
in the 𝑖-th layer and maps with 𝑀� to the same
node in 𝐺� as the node they inherited their label
from. These labels, though, have already been
taken into account in 𝔏𝐺𝜔����. By induction, it is
easily deduced that 𝔏�𝐺𝜔(𝑣) ∈ 𝔏𝐺𝜔���� �𝑀�(𝑣)� for
every node 𝑣 in 𝐷𝜔(𝐺). ∎

Theorem 1
Let 𝜔 be a correct sentence in the language
generated by a grammar 𝐺, i.e. 𝜔 ∈ 𝐿(𝐺), then
 〈#; 1, |𝜔|; #〉 ∈ 𝔏𝐺𝜔(𝑆).

Proof
This directly results from the previously
proved lemmas. 𝔏�𝐺𝜔�𝛾�1,1� = 〈#; 1, |𝜔|; #〉 and
𝔏�𝐺𝜔�𝛾�1,1� ∈ 𝔏𝐺𝜔���� �𝑀��𝛾�1,1��, where 𝑀��𝛾�1,1� = 𝑆.
∎

The above theorem gives a tool to check if
a particular sentence can potentially be a correct
one in 𝐺, i.e. having any correct derivation
starting from 𝑆. If 〈#; 1, |𝜔|; #〉 is not found
for 𝑆, then the sentence 𝜔 obviously does not
belong to 𝐿(𝐺). On the other hand,
if 〈#; 1, |𝜔|; #〉 is found for 𝑆 indeed, then
further procedure must be undertaken to check
its correctness.

6. Algorithm

The algorithm is based on the labelling closure
routine for the initial labelling of a given
grammar graph. The following quasi-language
describes its version for a given 2nd order non-
-contracting grammar 𝐺:

input txt: String;
input grammar G;
type Label2nd: (left: Int, prod: Production,

 right: Int);
type Label: (leftlbl: Label2nd, left: Int,
 right: Int, rightlbl: Label2nd);
let lst: List of (lbl: Label, nod: Node);
let crs: Int = 1;
let prods = set of all production nodes;
let symbs = set of all symbol nodes;
let lbl: Label;
for each i in 1..|ω|
 for each s in symb
 if txt(i) = s then
 append (((i–1, nil, i), i, i,
 (i, nil, i+1)), s)
 to lst;
 end if;
 end for;
end for;
while crs <= length of lst
 let n := lst(crs).nod;
 if n is symbol node then
 for each p in prods
 if p has two children then
 for each c in 1..crs-1
 let s := lst(c).nod;
 let newlbl: Label = nil;
 if n is left child of p and
 s is right child of p then
 if n.rightlbl = s.leftlbl then
 let lbl := (n.leftlbl, n.left,
 s.right, s.rightlbl);
 if (lbl, p) not in lst then
 append (lbl, p) to lst;
 end if;
 end if;
 elsif n is right child of p and
 s is left child of p then
 if n.leftlbl = s.rightlbl then
 let lbl := (s.leftlbl, s.left,
 n.right, n.rightlbl);
 if (lbl, p) not in lst then
 append (lbl, p) to lst;
 end if;
 end if;
 end if;
 end for;
 elsif p has one child then
 if n is child of p then
 let lbl := (n.leftlbl, n.left,
 n.right, n.rightlbl);
 if (lbl, p) not in lst then
 append t (lbl, p) to lst;
 end if;
 end if;
 end if;
 end for;
 elsif n is production node then
 for each s in symbs
 if s is left parent of n then
 let lbl := (n.leftlbl, n.left, n.right,
 (n.left, n, n.right));
 if (lbl, s) not in lst then
 append (lbl, s) into lst;
 end if;
 elsif s is right parent of n then
 let lbl := ((n.left, n, n.right),
 n.left, n.right, n.rightlbl);
 if (lbl, s) not in lst then
 append (lbl, s) into lst;
 end if;
 elsif s is the only parent of n then
 let lbl := (n.leftlbl, n.left,
 n.right, n.rightlbl);
 if (lbl, s) not in lst then
 append (lbl, s) into lst;
 end if;
 end if;
 end for;

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 42

 end if;
 crs := crs + 1;
end while;

The main data structure in the above algorithm is
a list of pairs consisting of a label and node
reference (whether it is production node,
symbol node or empty reference). A label
〈〈𝑎, 1, 𝜁, 𝑏〉, 𝑐,𝑑, 〈𝑒, 1, 𝜉,𝑓〉〉 is represented by
((a,ζ,b),c,d,(e,ξ,f)) in this data structure. If 𝜁 or 𝜉
is #, then it is represented by the empty
reference (nil). The input string txt is first
split into single characters corresponding to
terminal symbol nodes. All the pairs of labels
with nil in the second order labels (equivalent
to #) and unit range corresponding to a particular
character combined with the corresponding
terminal symbol node references are put to list.
Thus, the initial labelling is represented there.

Next, the algorithm finds new labels based
on the previously found ones. This is done
according to the labelling closure rules. Newly
found labels are added at the end of the list.
In parallel, a cursor crs (marker) is moved step
by step through the list to mark the last element
in the list for which there have been generated
new labels based on all the already existing in
the list. That is to say, for a label currently
pointed by the marker, all the previous ones in
the list are tested if they “match” to produce new
ones. The new ones, are appended to the list if
they have not existed yet there. This is similar to
the breadth-first search algorithm.

The number of possible labels is finite.
The number 𝑀𝐼𝐼 of possible second order labels
is limited with the following formula:

𝑀𝐼𝐼 ≤ |𝜔|2(1 + |𝑃|). (40)

The number 𝑀𝐼𝐼 of possible first order labels is
limited with the next formula:

𝑀𝐼 ≤ |𝜔|2(𝑀𝐼𝐼)2 (41)

Thus the number of labels is not greater than
|𝜔|2�|𝜔|2(1 + |𝑃|)�2. Since, the number of
production nodes in the grammar graph is finite,
the number of possible pairs consisting of a label
and a node is also finite. This number will never
exceed |𝜔|2�|𝜔|2(1 + |𝑃|)�2(|𝑁| + |Σ| + |𝑃|).
This implies that the algorithm will always stop
at some point as it never produces any pair of
label and node twice.

As soon as the algorithm stops, one can
check if there exists the special label
((0,nil,1),1,|ω|,(|ω|,nil,|ω|+1)) in the list.
If it does indeed, then the given string txt

might be a correct sentence in the given
grammar 𝐺. If it does not, then the sentence
is obviously incorrect.

To find more accurate limit for the number
of possibly generated labels, note that second
order labels will always have form 〈𝑎, 1,𝜃𝑖, 𝑏′〉,
if put on the left of 〈𝑎, 𝑏〉, 𝑎 ≤ 𝑏′ ≤ 𝑏, and
〈𝑎′, 1,𝜃𝑗,𝑏〉, if put on the right of 〈𝑎, 𝑏〉,
𝑎 ≤ 𝑎′ ≤ 𝑏; 𝜃𝑖 and 𝜃𝑗 – some productions or
the special mark # (represented by the empty
reference nil). Thus, the overall form of a first
order label with two second order labels is

〈〈𝑎, 1,𝜃𝑖, 𝑏′〉,𝑎, 𝑏, 〈𝑎′, 1,𝜃𝑗,𝑏〉〉. (42)

There are four numbers that are linearly bounded
by |𝜔|. Thus, the algorithm time and space is not
worse than 𝒪(𝑛4 ∙ 𝑚2), where 𝑛 = |𝜔| and
𝑚 = |𝑃| + 1.

Example 6
Let the grammar 𝐺 consist of the following
production rules: 𝑃1:𝑆 → 𝑍𝐶, 𝑃2:𝑍 → 𝐴𝐵,
𝑃3:𝐵 → 𝑋𝑌, 𝑃4:𝑋 → 𝐻𝐵, 𝑃5:𝑌 → 𝐵𝐺, 𝑃6:𝐺𝐵 →
𝐵𝐺, 𝑃7:𝐺𝐶 → 𝐶𝐶, 𝑃8:𝐵𝐻 → 𝐻𝐵, 𝑃9:𝐴𝐻 → 𝐴𝐴,
𝑃10:𝐴 → 𝑎, 𝑃11:𝐵 → 𝑏 and 𝑃12:𝐶 → 𝑐. G
contains the sentences of the form 𝑎𝑛𝑏𝑛𝑐𝑛,
𝑛 ≥ 1. Let us trace the algorithm for 𝜔 = 𝑎𝑏𝑐.
 |𝜔| = 3. The following table shows the
content of the main list filled with initial
labelling data and the values of the cursor after
the each position:

Pos. Newly added label Target
node

Cursor
pos.

1. ((0,nil,1),1,1,(1,nil,2)) a 1
2. ((1,nil,2),2,2,(2,nil,3)) b 1
3. ((2,nil,3),3,3,(3,nil,4)) c 1

After the 3rd step the list contains 3 initial labels,
paired with their corresponding nodes, and
the cursor points to the first pair. Stopping
condition is not met and the label
((0,nil,1),1,1,(1,nil,2)) in the first position will
be used to produce new ones, potentially
matching it with any other label existing in
the list. The target node 𝑎 is a symbol, thus
a subsequent loop iterates over all
the productions. For each production with two
children all the previous elements of the list are
compared if the two refer to 2 target nodes being
children of this production with matching second
order labels. Of course, there are no previous
elements in the list as the cursor is at the first
one. For one-child production it may, however,
produce new pair of label and node. The node 𝑎
is the only child of 𝑃10. The newly produced

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 5 29−44 (2017)

 43

label ((0,nil,1),1,1,(1,nil,2)) for 𝑃10, which in
fact is the same as for 𝑎, is added to the list as
this has not been added to the list yet. There are
no more labels produced in the step and
the cursor moves to the next position, i.e.
the second one. So, the list is given new entry:

4. ((0,nil,1),1,1,(1,nil,2)) P10 2

The same routine for the second and third
position in the list gives the following:

5. ((1,nil,2),2,2,(2,nil,3)) P11 3
6. ((2,nil,3),3,3,(3,nil,4)) P12 4

Note that the cursor moved to beyond the initial
labelling entries in the list. The stop condition is
not met as the list was enlarged in the meantime
with newly added labels. The algorithm
continues.

In the fourth step, the algorithm finds the
target node P10 to be a production. Since its only
parent is the symbol node 𝐴, new label
((0,nil,1),1,1,(1,nil,2)) is proposed for this node.
It is appended indeed to the list, paired with 𝐴,
as it has not existed yet there. Similarly,
((1,nil,2),2,2,(2,nil,3)) paired with 𝐵 and
((2,nil,3),3,3,(3,nil,4)) paired with 𝐶 are added
to the list:

7. ((0,nil,1),1,1,(1,nil,2)) A 5
8. ((1,nil,2),2,2,(2,nil,3)) B 6
9. ((2,nil,3),3,3,(3,nil,4)) C 7

Now, with the cursor pointing to the 7th position,
that corresponds to a label assigned to 𝐴, the
algorithm iterates over all productions and finds
that 𝐴 is the left child of P2 and both the left and
the right child of P9. Nevertheless, it does not
match to any previously generated label, hence
the cursor moves on to the next position without
producing any new label:

- - - 8

The symbol node B is the right child of P2,
the left child of P5 and the left child of P6. For
P2, when iterating over the previous positions,
the algorithm finds that the label
((0,nil,1),1,1,(1,nil,2)) assigned to 𝐴 in the 7th
position matches with ((1,nil,2),2,2,(2,nil,3)) in
the current position and produces new label
((0,nil,1),1,2,(2,nil,3)) for the node P2. This is
the only matching for the 8th position, hence:

10. ((0,nil,1),1,2,(2,nil,3)) P2 9

The label ((2,nil,3),3,3,(3,nil,4)) assigned to 𝐶
does not match to any previous label assigned to
the children of P1 and P7, the only parents of 𝐶.
The cursor moves to the next position:

- - - 10

Similarly, the next steps of the algorithm
produces:

11. ((0,nil,1),1,2,(2,nil,3)) Z 11
12. ((0,nil,1),1,3,(3,nil,4)) P1 12
13. ((0,nil,1),1,3,(3,nil,4)) S 13
- - - 14

and the algorithm stops finding the special label
((0,nil,1),1,3,(3,nil,4)) for the initial symbol 𝑆,
stating that 𝜔 = 𝑎𝑏𝑐 can potentially be a correct
sentence in 𝐺. ▲

Example 7
Let the grammar 𝐺 be as in
the example 6. Let also 𝜔 = 𝑎𝑏𝑐𝑐.
The following table shows all the steps of
the algorithm:

Pos. Newly added label Target
node

Cursor
pos.

1. ((0,nil,1),1,1,(1,nil,2)) a 1
2. ((1,nil,2),2,2,(2,nil,3)) b 1
3. ((2,nil,3),3,3,(3,nil,4)) c 1
4. ((3,nil,4),4,4,(4,nil,5)) c 1
5. ((0,nil,1),1,1,(1,nil,2)) P10 2
6. ((1,nil,2),2,2,(2,nil,3)) P11 3
7. ((2,nil,3),3,3,(3,nil,4)) P12 4
8. ((3,nil,4),4,4,(4,nil,5)) P12 5
9. ((0,nil,1),1,1,(1,nil,2)) A 6
10. ((1,nil,2),2,2,(2,nil,3)) B 7
11. ((2,nil,3),3,3,(3,nil,4)) C 8
12. ((3,nil,4),4,4,(4,nil,5)) C 9
- - - 10
13. ((0,nil,1),1,2,(2,nil,3)) P2 11
- - - 12
14. ((2,nil,3),3,4,(4,nil,5)) P7 13
15. ((0,nil,1),1,2,(2,nil,3)) Z 14
16. ((2,nil,3),3,4,(3, P7,4)) G -
17. ((3,P7,4),3,4, (4,nil,5)) C 15
18. ((0,nil,1),1,3,(3,nil,4)) P1 16
- - - 17
- - - 18
19. ((0,nil,1),1,3,(3,nil,4)) S 19
- - - 20

In the above routine the algorithm did not find
the special label ((0,nil,1),1,4,(4,nil,5)) for
the initial symbol 𝑆. This implies that 𝑎𝑏𝑐𝑐 is
not a correct sentence in the given grammar. ▲

Paweł Aleksander Ryszawa, On Sentence Membership Problem in Context-Sensitive Languages

 44

7. Conclusion

The idea of the algorithm presented in this paper
lays behind the labelling closure generated by
the initial labelling of the terminal nodes.
A necessary condition for a particular sentence
to belong to some non-contracting grammar was
shown. Some properties related to new concepts
were described.

Further research on the grammar and
derivation nets might be conducted to improve
their “selectiveness”, i.e. to show a more
restricting necessary condition. Such a condition
should reject more incorrect sentences than the
algorithm presented here. One of the possible
ways to improve the algorithm would be to
discover potential derivations, based on how
successive labels have been obtained, and check
their correctness.

8. Bibliography

[1] Aho A.V., Lam M.S., Sethi R.,

Ullman J.D., Compilers: Principles,
Techniques and Tools, 2nd Edition, Pearson
Education, 2006.

[2] Chomsky N., “On Certain Formal
Properties of Grammars”, Information and
Control, Vol. 2, 137–167 (1959).

[3] Foryś M., Foryś W., Teoria automatów
i języków formalnych, EXIT, 2005.

[4] Hopcroft J.E., Motwani R., Ullman J.D.,
Introduction to Automata Theory,
Languages and Computation, 2nd Edition,
Pearson Education, 2001.

[5] Kuroda S.-Y., “Classes of Languages and
Linear-Bounded Automata”, Information
and Control, Vol. 7, 207–223 (1964).

[6] Linz P., An Introduction to Formal
Languages and Automata, 5th Edition,
Jones & Bartlett Learning, 2012.

[7] Martin J.C., Introduction to Languages and
the Theory of Computation, 4th Edition,
McGraw-Hill, 2011.

[8] Szwoch M., Języki formalne, automaty
i translatory, PWNT, 2008.

[9] Waite W.M., Goos G., Compiler
Construction, Springer-Verlag, 1984.

[10] Younger D.H., “Recognition and Parsing of
Context-Free Grammars in Time n3”,
Information and Control, Vol. 10, Issue 2,
189–208 (1967).

O problemie przynależności zdań do języków kontekstowych

P.A. RYSZAWA

W artykule wprowadzony został nowy rodzaj grafu – graf gramatyczny. Możliwość przypisywania etykiet do
węzłów daje rozszerzenie do tzw. sieci gramatycznej. Sieć gramatyczną należy traktować jako nowe narzędzie
graficzne w analizie przynależności zdań do danego języka kontekstowego. Inna koncepcja, sieć wywodu, ściśle
związana z grafem gramatycznym i o podobnej strukturze, została wykorzystana do pokazania algorytmu, który
potrafi wstępnie wyselekcjonować niektóre zdania nienależące do danego języka generowanego przez gramatykę
kontekstową, pozostawiając inne jako potencjalnie w nim zawarte.

Słowa kluczowe: gramatyka kontekstowa, gramatyka nieskracająca, język formalny, graf, rozbiór zdań.

	On sentence membership problem in context-sensitive languages
	P.A. Ryszawa
	Military University of Technology, Faculty of Cybernetics
	Keywords: context-sensitive grammar, non-contracting grammar, formal language, graph, parsing.

