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A new type of graph is introduced, the grammar graph. The possibility of assigning labels to each node in such 
a graph extends it to the grammar net. The grammar net should be considered as a new graphical tool that helps 
in an analysis of whether a particular sentence belongs to a given context-sensitive grammar. Another concept, 
the derivation net, closely related to the grammar graph and of a similar structure, will be used to show  
an algorithm that is able to decide that some sentences do not belong to a language generated by a context 
sensitive grammar, while leaving others as a candidate members of it. 
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1. Introduction 
 
In the formal language theory, every grammar 
can be expressed in terms of an alphabet (finite 
set of terminal symbols) denoted by 𝑉𝑇, finite set 
of non-terminal symbols denoted by 𝑉𝑁 and a set 
of production rules – i.e. “prescriptions” of how 
to derive a “correct” sentence over the alphabet 
with those symbols, starting from some non- 
-terminal symbol S. Each production is of  
the form 𝜇1𝜇2 … 𝜇𝑚 → 𝛾1𝛾2 … 𝛾𝑛, where 𝜇𝑖, 𝛾𝑖 
are symbols. A particular class of grammars, 
where 𝑚 <  𝑛 and at least one of 𝜇𝑖 is non- 
-terminal, is called non-contracting. If, for each 
production of the above form, 𝑛 does not exceed 
some 𝑁, we call this a non-contracting grammar 
of 𝑁-th order. Every such grammar has its 
equivalent context-sensitive grammar and vice- 
-versa, in the sense that both generate the same 
language (weak equivalence). By definition, 
context-sensitive grammars are those with 
productions of the form 𝛼𝜇𝛽 → 𝛼𝛾1𝛾2 … 𝛾𝑛𝛽, 
where 𝛼 = 𝛼1𝛼2 …𝛼𝑝, 𝛽 = 𝛽1𝛽2 …𝛽𝑞, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 
are some symbols (terminal or non-terminal) and 
𝜇 is some non-terminal symbol. For the sake of 
simplicity, it is assumed throughout this paper 
that an immaterial and trivial type of production 
𝑃:𝑈 → 𝜀 (deriving empty string), where 𝑈 ∈ 𝑉𝑁, 
is not included in the considered grammars. 

It has been already proved (see e.g. [3]) that 
for each non-contracting grammar there exists  
an equivalent grammar of 2nd order. Moreover, 
one can easily construct an equivalent grammar 
where every production containing a terminal 
symbol 𝑎 can only be of the form 𝐴 → 𝑎. Thus, 
every context-sensitive grammar can be 

equivalently expressed via a grammar with 
productions of the form: 𝐴 → 𝐵𝐶, 𝐴𝐵 → 𝐶𝐷, 
𝐴 → 𝐵 and 𝐴 → 𝑎, where capital letters denote 
non-terminal and small letters denote terminal 
symbols. 

So far, there have been found many 
algorithms for parsing different kind of 
grammars. One of them, C-Y-K (see e.g.  
[5], [3]) – for context-free grammars, was  
an inspiration to construct the one presented  
it this paper. This new algorithm will be 
illustrated with one of the best known context- 
-sensitive language {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥  1}. 
 
2. Grammar graph and net 
 
To start with, we need a new graphical “tool” to 
express the ideas laying behind the derivation of 
grammar trees. This is “grammar graph” which 
is a special kind of the directed bipartite graph 
with all the edges ordered in its endpoints.  
Two set of nodes are represented by rectangles 
and circles. Single-lined circle nodes will 
represent non-terminal symbols, double-lined 
circles will represent terminal symbols and 
rectangles will represent productions. More 
formally, the grammar graph 𝐺� representing 
some grammar 𝐺 = 〈𝑉𝑁,𝑉𝑇 ,𝑃, 𝑆〉 is modelled as: 
 

𝐺� = 〈𝑉,𝛤𝑆 ,𝛤𝑁−1〉  (1) 
where: 
𝑉 = 𝑉𝑁 ∪ 𝑉𝑇 ∪ 𝑃 is a set of nodes identified 
with symbols and production rules of 𝐺, 
𝑉𝑁 – a set of non-terminal symbol nodes, 
𝑉𝑇 – a set of terminal symbols nodes (alphabet), 
P – a set of production rules, 
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𝛤S:𝑃 → (𝑉𝑁 ∪ 𝑉𝑇)+ is a mapping representing 
an ordered list (tuple) of the directed edges 
outgoing from each 𝑃𝑖 ∈ 𝑃 to their successor 
symbol nodes, as pointed by the graph arrows. 
𝛤𝑁−1:𝑃 → 𝑉𝑁+ is a (“reverse”) mapping from  
a production node to an ordered list (tuple)  
of its predecessor non-terminal symbol nodes. 
The tuple must contain at least one element 
because every production in the underlying 
grammar has at least one symbol on the left. 
Please note the notation: 𝑋+ = 𝑋 × 𝑋∗ = 
= 𝑋 × (𝑋 ∪ 𝑋2 ∪ … ) = 𝑋2 ∪ 𝑋3 ∪ … (𝑋∗ is the 
Kleene closure). For all productions 𝑃𝑖 ∈ 𝑃 of 
the form 𝑃𝑖: 𝜇1𝜇2 … 𝜇𝑚 → 𝛾1𝛾2 … 𝛾𝑛, the maps 
𝛤S and 𝛤𝑁−1 are subject to the following 
constraints: 

𝛤S(𝑃𝑖) = 〈𝛾1, 𝛾2, … , 𝛾𝑛〉  (2) 
 

𝛤𝑁−1(𝑃𝑖) = 〈𝜇1, 𝜇2, … , 𝜇𝑚〉 (3) 
 

In this paper, though, examples will be based on 
non-contracting grammars of order 2. 

It is emphasized here that the above defined 
graph is of special kind. All the arrows incoming 
to and outgoing from a production node are 
ordered. This is expressed via the special form  
of the mapping 𝛤S and 𝛤𝑁−1 that maps  
the production nodes to a set of tuples of nodes 
and not a family of their subsets! Of course, each 
tuple, by its nature, holds the information about 
the order. Graphically, it will be depicted by  
the arrow starting points placed from left to right 
on the edge of a production node symbol as  
per 𝛤S. The same concerns the arrows incoming 
to a production node, all of them are strictly 
ordered based on 𝛤𝑁−1. 
 
Example 1 
The first example shows the basic parts of  
grammar graphs for productions: 

 
 

Fig. 1. A fragment of some grammar graph 
representing single production P1: S→AB 

 
The following productions 𝑃𝑖 are considered: 
𝑃1: 𝑆 → 𝐴𝐵, 𝑃2: 𝑆 → 𝐵𝐴, 𝑃3:𝐴 → 𝐵, 𝑃4:𝐴 → 𝑎, 
𝑃5:𝐴𝐵 → 𝐶𝐷 and 𝑃6:𝐵𝐴 → 𝐶𝐷. The Figure 1 
shows the first of them. Recall that the starting 
points of the arrows are ordered according to  

the order of symbols on the right-hand side in 
the corresponding production. Here, 𝛤S(𝑃1) = 
= 〈𝐴,𝐵〉 and 𝛤𝑁−1(𝑃1) = 〈𝑆〉. The next graph,  
in Figure 2, although equivalent in terms of  
the classic graph definition to that of Figure 1, 
represents different production 𝑆 → 𝐵𝐴. Here, 
the difference is that 𝛤S(𝑃2) = 〈𝐵,𝐴〉. 

 
 

Fig. 2. A graph fragment representing P2: S→BA 
 
Next, a production of the form 𝐴 → 𝐵 is shown 
in Figure 3. Here, 𝛤S(𝑃3) = 〈𝐵〉 and 𝛤𝑁−1(𝑃3) = 
= 〈𝐴〉. 

 
 

Fig. 3. A grammar graph representing single 
production P3: A→B 

 
A production of the form 𝐴 → 𝑎 is shown in 
Figure 4. Here, 𝛤S(𝑃4) = 〈𝑎〉 and 𝛤𝑁−1(𝑃4) = 
= 〈𝐴〉. 
 

 
 

Fig. 4. A grammar graph representing single 
production P4: A→a 

 
A production of the form 𝐴𝐵 → 𝐶𝐷, specific to 
the non-contracting grammars, is shown in 
Figure 5. 
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Fig. 5. A graph fragment representing P5: AB→CD 
 
In the above graph, the production node 𝑃5 
represents the order of the non-terminal nodes 𝐴 
and 𝐵 by ordering the incoming arrows from left 
to right. 𝛤S(𝑃5) = 〈𝐶,𝐷〉 and 𝛤𝑁−1(𝑃5) = 〈𝐴,𝐵〉. 

The last example, representing  
the production node 𝑃6 is shown in Figure 6.  
It differs from 𝑃5 in that it has 𝛤𝑁−1(𝑃6) = 
= 〈𝐵,𝐴〉, i.e. the ordering of the predecessor 
nodes tuple is different.  

 
 

Fig. 6. A graph fragment representing P6: BA→CD 
▲ 

 
3. Labelling 
 
Having defined the basic grammar graph 
structures, let us introduce an extension –  
a labelling on the grammar graph, thus, letting us 
derive the definition of the grammar net.  
A grammar net is a grammar graph with some 
labelling defined on it. The grammar graph 𝐺� 
labelling, denoted by 𝔏𝐺� is: 
 

𝔏𝐺� :𝑉 → 2�𝐸𝐼�   (4) 
where: 
𝐸𝐼 – the set of (so called) first order labels, 
𝑉 → 2�𝐸𝐼� – a mapping that assigns a subset of 
first order labels to each grammar graph node. 

Each first order label 𝑒 ∈ 𝐸𝐼 is of the form 
𝑒 = 〈𝜓,𝑎, 𝑏,𝜑〉 (hereinafter shortly denoted as 
“label” 𝑒) belongs to the set: 
 

𝐸𝐼 = �〈𝜓, 𝑎, 𝑏,𝜑〉 �
 1 ≤ 𝑎 ≤ 𝑏 ≤ |𝜔|;
𝑎, 𝑏 ∈ ℕ;𝜓,𝜑 ∈ 𝐸𝐼𝐼� 

 (5) 

where: 
𝑎, 𝑏 – correspond to the position of the first and 
the last character of some sentence 𝜔, 
respectively, 
𝐸𝐼𝐼 – the set of second order labels, 
𝜓,𝜑 ∈ 𝐸𝐼𝐼 – some second order labels. 

A second order label is of the form 
𝜓 = 〈𝑎, 𝑗,Θ, 𝑏〉 ∈ 𝐸𝐼𝐼 and 

𝐸𝐼𝐼 = �〈𝑎, 𝑗,Θ, 𝑏〉�
0 ≤ 𝑎 ≤ 𝑏 ≤ |𝜔| + 1;

𝑎 ∈ ℤ; 𝑏 ∈ ℕ;Θ ∈ 𝑃�; 𝑗 ∈ ℕ�  

(6) 
where: 
𝑎, 𝑏 – have the same meaning as for the first 
order labels, 
𝑃� = 𝑃 ∪ {#} – is a set of productions extended 
with a special mark #, 
𝑗 – is some natural number, 
Θ – is some production from the grammar G or 
the special mark #. 
To simplify the notation, the left part of the label 
of the form 〈〈𝑎 − 1,1,Θ,𝑎〉,𝑎…� will be shortly 
denoted by 〈Θ;𝑎…�. Meanwhile, the right part of 
the label of the form �…𝑏, 〈𝑏, 1,Θ, 𝑏 + 1〉〉 will be 
denoted by �…𝑏;Θ〉. 

Now, let 𝔏𝐺� be some labelling. Since  
the grammar graph 𝐺� is unambiguously defined 
by the corresponding grammar G, the labelling 
on 𝐺� can be identified with G as well, i.e. 
 

𝔏𝐺 ≝ 𝔏𝐺� .   (7) 
 
Definition 1 
Let us also impose a partial order in the set of all 
possible labelling on 𝐺�, denoted by ≽,  
as follows: 𝔏𝐺′

1 ≽ 𝔏𝐺′′
2  if and only if 

𝔏𝐺′
1 (𝑣) ⊇ 𝔏𝐺′′

2 (𝑣), for 𝑣 ∈ 𝑉′ ⊇ 𝑉′′, where 
𝑉′ = 𝑉𝑁′ ∪ 𝑉𝑇′ , 𝑉′′ = 𝑉𝑁′′ ∪ 𝑉𝑇′′ for 𝐺′ = 
= 〈𝑉𝑁′ ,𝑉𝑇′ ,𝑃′, 𝑆′〉 and 𝐺′′ = 〈𝑉𝑁′′,𝑉𝑇′′,𝑃′′, 𝑆′′〉. ● 
 
The labelling closure 𝔏𝐺���� is the minimal labelling 
“generated” by 𝔏𝐺 according to the following 
rules: 
a) (initial rule) The closure contains all of  

the elements from the generating  
labelling, i.e. 
 

𝔏𝐺���� ≽ 𝔏𝐺 .   (8) 
 

b) (joining rule) If for a production 𝑃𝑖 ∈ 𝑃 of 
the form 𝑃𝑖: 𝛾 → 𝐵1𝐵2 …𝐵𝑚, where 
𝛾 ∈ (𝑉𝑁)∗ and 𝐵1,𝐵2, … ,𝐵𝑚 ∈ 𝑉𝑇 ∪ 𝑉𝑁, 
there exist 𝜓0,𝜓1, …𝜓𝑚 ∈ 𝐸𝐼𝐼 and 
𝑎1, … ,𝑎𝑚 ∈ ℕ, 𝑏1, … , 𝑏𝑚,∈ ℕ such that for 
each 𝑘 = 1,2, … ,𝑚: 
 

𝑒𝑘 = 〈𝜓𝑘−1,𝑎𝑘 ,𝑏𝑘 ,𝜓𝑘〉 ∈  𝔏𝐺����(𝐵𝑘)   (9) 
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and for each 𝑘 = 1,2, … ,𝑚 − 1: 
 

 𝜓𝑘 = 〈𝑏𝑘 , 𝑗𝑘 ,Θ𝑘 ,𝑎𝑘+1〉  (10) 
 
for some Θ𝑘 ∈ 𝑃� , 𝑗𝑘 ∈ ℕ, then: 
 

𝑒 = 〈𝜓0,𝑎0,𝑏𝑚,𝜓𝑚〉 ∈  𝔏𝐺����(𝑃𝑖).   (11) 
 

c) (splitting rule) If for a production 𝑃𝑖 ∈ 𝑃 of 
the form 𝑃𝑖:𝐴1𝐴2 …𝐴𝑛 → 𝛾, where 
𝐴1,𝐴2, … ,𝐴𝑛 ∈ 𝑉𝑁 and 𝛾 ∈ (𝑉𝑇 ∪ 𝑉𝑁)∗ there 
exists a label 𝑒 such that: 
 

𝑒 =  〈𝜓,𝑎, 𝑏,𝜑〉 ∈ 𝔏𝐺����(𝑃𝑖)   (12) 
 
then: 
 

 〈𝜓,𝑎, 𝑏, 〈𝑎, 1,𝑃𝑖 , 𝑏〉〉 ∈ 𝔏𝐺����(𝐴1), 
 

〈〈𝑎, 𝑗 − 1,𝑃𝑖, 𝑏〉,𝑎, 𝑏, 〈𝑎, 𝑗,𝑃𝑖 , 𝑏〉〉 ∈ 𝔏𝐺�����𝐴𝑗�, 
 
for 𝑗 = 2, … ,𝑛 − 1, and 
 

 〈〈𝑎,𝑛 − 1,𝑃𝑖, 𝑏〉,𝑎, 𝑏,𝜑〉 ∈ 𝔏𝐺����(𝐴𝑛). 
(13) 

 
Example 2 
Assume that the production rule 𝑃1:𝐴 → 𝑎 
belongs to some grammar against which  
we test the sentence 𝑎𝑎𝑏𝑎 and  
the labelling for the terminal node contains  
3 labels: 〈#; 1,1; #〉, 〈#; 2,2; #〉 and 〈#; 4,4; #〉. 
After applying the labelling closure routine  
the production rule 𝑃1 node and its predecessor, 
the non-terminal symbol node 𝐴, also contains 
those 3 labels – see Figure 7. 
 

 
 

Fig. 7. Labelling example for production P1: A→a 
 
Assume also that the grammar contains  
the production rule 𝑃2: 𝑆 → 𝐴𝐵, the node 𝐵 is 
labelled with 〈#; 3,3; #〉 and the node 𝐴 is 
labelled with 〈#; 1,1; #〉, 〈#; 2,2; #〉 and 
〈#; 4,4; #〉. 
 

 
Fig. 8. Labelling example for production P2: S→AB 

 
According to the joining rule the labelling 
closure must contain also 〈#; 2,3; #〉 for 𝑃2  
as 〈#; 2,2; #〉 and 〈#; 3,3; #〉 meet at the arrows 
outgoing from 𝑃2. This is further copied to  
the node 𝑆, according to the splitting rule 
(without the actual splitting as there is only one 
predecessor). See Figure 8. ▲ 
 
Example 3 
Assume we have some grammar with  
a production rule 𝑃3:𝐴𝐵 → 𝐶𝐷.  
The symbol node D is labelled with 
〈〈4,1,𝑃1, 5〉, 4,7, 〈6,1,𝑃2, 7〉〉 and the symbol 
node 𝐶 is labelled with 〈#; 3,3; #〉 and 
〈#; 3,5, 〈4,1,𝑃1, 5〉〉 – see Figure 9. 
 

 
Fig. 9. Labelling example for production P3: 

AB→CD 
 
Two labels, namely 〈#; 3,5, 〈4,1,𝑃1, 5〉〉 and 
〈〈4,1,𝑃1, 5〉, 4,7, 〈6,1,𝑃2, 7〉〉, meet the joining 
criteria as they share second order label 
〈4,1,𝑃1, 5〉 on their appropriate sides. Thus, they 
are entitled to be joined together in  
the production rule node 𝑃3 to produce 
〈#; 3,7, 〈6,1,𝑃2, 7〉〉. Finally, according to  
the splitting rule, this further produces labels 
〈#; 3,7, 〈3,1,𝑃3, 7〉〉 and  
〈〈3,1,𝑃3, 7〉, 3,7, 〈6,1,𝑃2, 7〉〉 for the nodes 𝐴 
and 𝐵, respectively. ▲ 
 
The overall algorithm of labelling closure on  
a 2nd order non-contracting grammar net is that: 

A 
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〈#; 3,5, 〈4,1,𝑃1, 5〉〉 
〈#; 3,3; #〉 
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〈#; 3,7, 〈6,1,𝑃2, 7〉〉 

〈#; 3,7, 〈3,1,𝑃3, 7〉〉 〈〈3,1,𝑃3, 7〉, 3,7, 〈6,1,𝑃2, 7〉〉 
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a) It copies all the labels from the initial 
labelling. 

b) It joins two labels L and R, one from the left 
and one from the right successor symbol 
node of some production node, respectively, 
if their second order labels match in that  
the right second order label of L is the same 
as the left second order label of R.  
It means that 𝐿 = 〈𝜃𝐿 ,𝑎𝐿 ,𝑏𝐿 ,𝜂〉 and 
𝑅 = 〈𝜂,𝑎𝑅 , 𝑏𝑅 ,𝜃𝑅〉 produce 〈𝜃𝐿 ,𝑎𝐿 ,𝑏𝑅 ,𝜃𝑅〉 
in their common parent node. 

c) It splits any label in a production node 
having two predecessors into two labels.  
The left predecessor receives a copy of  
the left second order label and the two 
numbers but with a new right second order 
label. The same second order label is 
received by the new label assigned to  
the right predecessor as his left one second 
order label, the two numbers and the right 
second order label are copied from  
the original label. It means that 〈𝜃𝐿 ,𝑎, 𝑏,𝜃𝑅〉 
in a production node 𝑃𝑖 with two 
predecessors (left and right ones) produces 
𝐿 = 〈𝜃𝐿,𝑎, 𝑏, 〈𝑎, 1,𝑃𝑖 , 𝑏〉〉 for the left 
predecessor and 𝑅 = 〈〈𝑎, 1,𝑃𝑖 , 𝑏〉, 𝑎, 𝑏,𝜃𝑅〉 
for the right predecessor. 

d) Copies all the labels unchanged from a node 
to its unique predecessor, i.e. if there exists 
one predecessor only. 
Intuitively, splitting of a label into two, 

giving them matching second order labels 
〈𝑎, 1,𝑃𝑖 , 𝑏〉, expects that later another two labels 
with matching second order label 〈𝑎, 1,𝑃𝑖, 𝑏〉, 
derived from the above two ones, will join again. 
The “left” label will grow further on its left-hand 
side, while 〈𝑎, 1,𝑃𝑖 , 𝑏〉 as its right second order 
label will “wait for meeting” another such 
second order label as the left one of another label 
that, possibly, could have “grown up” on its 
right-hand side. It means that, applying 
subsequently the splitting and joining rules, 
〈𝜃𝐿,𝑎, 𝑏, 〈𝑎, 1,𝑃𝑖 , 𝑏〉〉 may grow up on the left to 
some 〈𝜃𝐿′,𝑎′, 𝑏, 〈𝑎, 1,𝑃𝑖, 𝑏〉〉, where 𝑎′ ≤ 𝑎, and 
〈〈𝑎, 1,𝑃𝑖 , 𝑏〉,𝑎, 𝑏,𝜃𝑅〉 may grow up to 
〈〈𝑎, 1,𝑃𝑖 , 𝑏〉,𝑎, 𝑏′,𝜃𝑅′〉, where 𝑏 ≤ 𝑏′. Finally, 
the two grown up labels may meet at some 
production node to join again, thus producing 
〈𝜃𝐿′,𝑎′, 𝑏′,𝜃𝑅′〉. It will be described later. 
 
4. Derivation graph and net 
 
Let us now construct a new kind of graph for  
the sentence 𝜔, denoted by 𝐷𝜔(𝐺) – a derivation 
graph. Assume first that the following chain of 
direct derivations is the derivation of 𝜔 in 𝐺: 
 

 𝑆 = 𝛾0 → 𝛾1 → 𝛾2 → ⋯ → 𝛾𝑚 = 𝜔.   (14) 
 
where 𝑖-th sentential form 𝛾𝑖, of length 𝐽𝑖, is: 
 

 𝛾𝑖 = 𝛾𝑖,1𝛾𝑖,2 … 𝛾𝑖,𝐽𝑖 ∈ (𝑉𝑁 ∪ 𝑉𝑇)𝐽𝑖,   
𝛾𝑖,𝑗 ∈ 𝑉𝑁 ∪ 𝑉𝑇    (15) 

 
Without loss of generality we can assume that 
there exist no two identical sentential forms in 
the derivation of 𝜔, i.e. 
 

 𝑖1 ≠ 𝑖2 ⇒ 𝛾𝑖1 ≠ 𝛾𝑖2 .    (16) 
 
Indeed, if there existed some 𝛾𝑎 = 𝛾𝑎1 = 𝛾𝑎2, 
such that 
 

 𝑆 = 𝛾0 → ⋯ → 𝛾𝑎1 → ⋯ → 𝛾𝑎2 … → 𝛾𝑚 = 𝜔 
(17) 

 
then the mid-derivation … → 𝛾𝑎1 → ⋯ → 𝛾𝑎2 →
⋯ could be just contracted to … → 𝛾𝑎 → ⋯, 
hence 
 

 𝛾0 → ⋯ → 𝛾𝑎 → ⋯ → 𝛾𝑚.      (18) 
 
It must be noted here, that there could exist more 
than one correct derivation for the sentence 𝜔! 
Until this is immaterial in this paper, let it be  
any of them. Moreover, assume that the above 
derivation does not contain any “weak cycle” in 
the following sense: 
 
Definition 2 

Let 𝛾𝑖
𝑃𝑎𝑖+1�⎯⎯� 𝛾𝑖+1

𝑃𝑎𝑖+2�⎯⎯� …
𝑃𝑎𝑗
��𝛾𝑗 be a part of some 

derivation from the 𝑖-th to the 𝑗-th step with 
productions 𝑃𝑎𝑖+1 ,𝑃𝑎𝑖+2 , … ,𝑃𝑎𝑗. Assume that  
a concatenation of 3 parts can be distinguished 
in every sentential form: 𝛾𝑘 = 
= 𝜑𝑘𝜒𝑘𝜓𝑘, 𝑘 ∈ 𝑖, 𝑗, 𝜑𝑘 ,𝜒𝑘 ,𝜓𝑘 ∈ (𝑉𝑁 ∪ 𝑉𝑇)∗, 
possibly of length 0, where 
𝜑𝑘 = 𝜑𝑘,1𝜑𝑘,2 …𝜑𝑘,|𝜑𝑘|, 𝜒 = 𝜒𝑘,1𝜒𝑘,2 …𝜒𝑘,|𝜒𝑘|, 
𝜓𝑘 = 𝜓𝑘,1𝜓𝑘,2 …𝜓𝑘,|𝜓𝑘|. Assume also that the 3 
parts 𝜑, 𝜒 or 𝜓 were chosen such that every 

direct derivation 𝜑𝑘𝜒𝑘𝜓𝑘
𝑃𝑎𝑘+1�⎯⎯�𝜑𝑘+1𝜒𝑘+1𝜓𝑘+1 

affects either 𝜒-part or one of the remaining  
two ones – 𝜑- or 𝜓-part. That is, one of  
the following cases occurs: 
a) a production 𝑃𝑎𝑘+1:𝜒𝑘,𝑥+1𝜒𝑘,𝑥+1 …𝜒𝑘,𝑥+𝑚 →

𝜒𝑘+1,𝑦𝜒𝑘+1,𝑦+1 …𝜒𝑘+1,𝑦+𝑛 starts with  
a subpart of the part 𝜒𝑘 and derives another 
subpart within 𝜒𝑘+1; 𝜑𝑘 = 𝜑𝑘+1 and 
𝜓𝑘 = 𝜓𝑘+1, 

b) either 𝑃𝑎𝑘+1:𝜑𝑘,𝑥′+1𝜑𝑘,𝑥′+1 …𝜑𝑘,𝑥′+𝑚 →
𝜑𝑘+1,𝑦′+1𝜑𝑘+1,𝑦′+2 …𝜑𝑘+1,𝑦′+𝑛 
(or  𝑃𝑎𝑘+1:𝜓𝑘,𝑥′′𝜓𝑘,𝑥′′+1 …𝜓𝑘,𝑥′′+𝑚 →
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𝜓𝑘+1,𝑦′′+1𝜓𝑘+1,𝑦′′+2 …𝜓𝑘+1,𝑦′′+𝑛) starts 
with a subpart of the part 𝜑𝑘 (or 𝜓𝑘) and 
derives another subpart within 𝜑𝑘+1  
(or 𝜓𝑘+1, respectively) while leaving 
𝜒𝑘 = 𝜒𝑘+1. 

Finally, assume that 𝜒𝑖 = 𝜒𝑗. If so, the sequence 
of all the steps where the first of the above two 
cases takes place is called weak cycle. ● 
 

Observe that stripping a derivation from 
weak cycles does not affect it as a whole. This is 
because all the productions in some weak cycle 
process sequential forms only within their  
𝜒-parts, finally yielding the same 𝜒-part as  
the initial one, while leaving other two parts 𝜑 
and 𝜓 intact. In parallel, all of the other 
productions still does not affect 𝜒-part within  
the boundaries of such a weak cycle (between 
𝑖-th and 𝑗-th steps). Observe also that  
the productions from a weak cycle may be 
interleaved with all the other productions within 
the respective boundaries in more than one way, 
provided that the order within each of the two 
classes remains unchanged. This is the result of 
the observation that the two classes are 
completely independent within those boundaries. 

Now, another restriction can be imposed  
on the sentence derivations. Unless stated 
otherwise, all the derivations considered in  
this paper are assumed not to have weak cycles. 
If a derivation contained any, it could be 
shortened, of course, and the weak cycle would 
disappear. 
 
Definition 3 
The following structure is a derivation graph  
of the sentence 𝜔 over the grammar 𝐺 for  
the derivation as defined in (14): 
 

𝐷𝜔(𝐺) = 〈𝑉� ,𝐸� , 𝐿�,𝑀�〉  (19) 
where: 
𝑉� = 𝑉�𝑆 ∪ 𝑉�𝑃 – set of nodes, 𝑉�𝑆 ∩ 𝑉�𝑃 = ∅, where 
𝑉�𝑆 represents some symbols and 𝑉�𝑃 represents 
some productions of 𝐺, 
𝐸� ⊆ 𝑉�𝑆 × 𝑉�𝑆 ∪ 𝑉�𝑆 × 𝑉�𝑃 ∪ 𝑉�𝑃 × 𝑉�𝑆 ⊆ 𝑉� × 𝑉�   
– a set of directed edges where none of them 
joins directly two nodes representing 
productions, 
𝐿� = 〈𝐿�0,𝐿�1, … , 𝐿�𝑚〉 – a sequence of layers,  
each consisting of a sequence of nodes  
𝐿�𝑖 = 〈𝛾�𝑖,1,𝛾�𝑖,2, … , 𝛾�𝑖,𝐽𝑖〉, where 𝛾�𝑖,𝑗 ∈ 𝑉�𝑆 for all  
𝑖, 𝑗, so each node from 𝑉�𝑆 belongs to an exactly 
one layer and all the nodes in a particular layer 
are different; this is ordering information for  
the nodes, 

𝑀�:𝑉� → 𝑉𝑁 ∪ 𝑉𝑇 ∪ 𝑃 – a mapping from nodes to 
the set of symbols (terminal and non-terminal 
ones) and productions in the underlying 
grammar 𝐺, such that 

 ∀𝜁∈𝑉�𝑃𝑀�(𝜁) ∈ 𝑃,    
 ∀𝜉∈𝑉�𝑆𝑀�(𝜉) ∈ 𝑉𝑁 ∪ 𝑉𝑇,        (20) 

subject to the following restrictions:  
Let 𝛾𝑘 = 𝜑𝜒𝑘𝜓, 𝛾𝑘+1 = 𝜑𝜒𝑘+1𝜓, 𝑃𝑎𝑘+1:𝜒𝑘 →
𝜒𝑘+1, where 𝜑,𝜒𝑘 ,𝜒𝑘+1,𝜓 ∈ (𝑉𝑁 ∪ 𝑉𝑇)∗.  
If 𝜑 = 𝛾1𝛾2 … 𝛾𝑥, 𝜒𝑘 = 𝛾𝑥+1𝛾𝑥+2 … 𝛾𝑥+𝑝, 
𝜓 = 𝛾𝑥+𝑝+1𝛾𝑥+𝑝+2 … 𝛾𝐽𝑘  and 𝜒𝑘+1 = 
= 𝛾′1𝛾′2 … 𝛾′𝑞 then 
 

𝐿�𝑘 = 〈𝛾�𝑘,1, … , 𝛾�𝑘,𝑥 ,𝛾�𝑘,𝑥+1, … , 𝛾�𝑘,𝑥+𝑝,
𝛾�𝑘,𝑥+𝑝+1, … , 𝛾�𝑘,𝐽𝑘〉 

𝐿�𝑘+1 =
= 〈𝛾�𝑘+1,1, … , 𝛾�𝑘+1,𝑥,𝛾�𝑘+1,𝑥+1, … ,
𝛾�𝑘+1,𝑥+𝑞 ,𝛾�𝑘+1,𝑥+𝑞+1, … , 𝛾�𝑘+1,𝐽𝑘+1〉 

 (21) 
and 

𝑀��𝛾�𝑘,1� = 𝑀��𝛾�𝑘+1,1� = 𝛾1,   
⋮     

𝑀��𝛾�𝑘,𝑥� = 𝑀��𝛾�𝑘+1,𝑥� = 𝛾𝑥,   
 

𝑀��𝛾�𝑘,𝑥+1� = 𝛾𝑥+1,    
⋮     

𝑀��𝛾�𝑘,𝑥+𝑝� = 𝛾𝑥+𝑝,    
 

𝑀��𝛾�𝑘+1,𝑥+1� = 𝛾′1,    
⋮     

𝑀��𝛾�𝑘+1,𝑥+𝑞� = 𝛾′𝑞,    
 

𝑀��𝛾�𝑘,𝑥+𝑝+1� = 𝑀��𝛾�𝑘+1,𝑥+𝑞+1� = 𝛾𝑥+𝑝+1, 
⋮     

𝑀��𝛾�𝑘,𝐽𝑘� = 𝑀��𝛾�𝑘+1,𝐽𝑘+1� = 𝛾𝐽𝑘.     (22) 
 
Of course, 

𝐽𝑘+1 = 𝐽𝑘 − 𝑝 + 𝑞,  (23) 
 

must hold. Next, 𝑉�𝑃 = �𝑃�1,𝑃�2, … ,𝑃�𝑚� and 
 

𝑀��𝑃�𝑘+1� = 𝑃𝑎𝑘+1  (24) 

for 𝛾𝑘
𝑃𝑎𝑘+1�⎯⎯�𝛾𝑘+1. Finally, the set of edges 

contains pairs of the form: 
 

〈𝛾�𝑘,1,𝛾�𝑘+1,1〉 ∈ 𝐸�,    
…     

〈𝛾�𝑘,𝑥 ,𝛾�𝑘+1,𝑥〉 ∈ 𝐸�,    
 

〈𝛾�𝑘,𝑥+1,𝑃�𝑘+1〉 ∈ 𝐸�,    
…     

〈𝛾�𝑘,𝑥+𝑝,𝑃�𝑘+1〉 ∈ 𝐸�,    
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〈𝑃�𝑘+1, 𝛾�𝑘+1,𝑥+1〉 ∈ 𝐸�,    
…     

〈𝑃�𝑘+1, 𝛾�𝑘+1,𝑥+𝑞〉 ∈ 𝐸�,    
 

〈𝛾�𝑘,𝑥+𝑝+1,𝛾�𝑘+1,𝑥+𝑞+1〉 ∈ 𝐸�,   
…     

〈𝛾�𝑘,𝐽𝑘 , 𝛾�𝑘+1,𝐽𝑘+1〉 ∈ 𝐸�,        (25) 
 
for each 𝑘, where 𝑥 – as defined for 𝐿�𝑘 and 𝐿�𝑘+1 
in (21). ● 
 

The following figure illustrates a part of 
derivation graph with two adjacent layers: 
 

 
Fig. 10. Two neighbouring layers of a derivation 

graph 
 
The general idea of connecting the nodes with 
arrows is as follows: 
a) A node 𝛾�𝑘,𝑙 in the 𝑘-th layer that 

corresponds to a symbol being part of  
the left side of the production rule 𝑃𝑎𝑘+1  
in the (𝑘 + 1)-th derivation step points to 
the production rule node following the layer, 
i.e. this is a case where 𝑥 + 1 ≤ 𝑙 ≤ 𝑥 + 𝑝 
(note that 𝑥 depends on 𝑘). 

b) A node 𝛾�𝑘,𝑙 that does not corresponds to  
a symbol being part of the left side of  
the production rule 𝑃𝑎𝑘+1 points to  
the corresponding node in the next layer, this 
a the case 𝑙 ≤ 𝑥 or 𝑥 + 𝑝 + 1 ≤ 𝑙. 
Moreover, both such nodes maps to the same 
symbol in the underlying grammar 𝐺. 

c) The node 𝑃�𝑘+1 between the layers 𝑘-th  
and (𝑘 + 1)-th points to the nodes in  
the (𝑘 + 1)-th layer that correspond to  
the right-hand side symbols of  
the production rule 𝑃𝑎𝑘+1 in the (𝑘 + 1)-th 
derivation step. 

 
Example 4 
Assume that some grammar 𝐺 consists of the 
following production rules: 𝑃1: 𝑆 → 𝐴𝐵, 
𝑃2:𝐴 → 𝑌𝑋, 𝑃3:𝑋𝐵 → 𝐵𝑍, 𝑃4:𝑍 → 𝐵, 𝑃5:𝐵 →

𝑋, 𝑃6:𝑌 → 𝑦, 𝑃7:𝑋 → 𝑥 and 𝑃8:𝐵 → 𝑏. 
Consider a possible derivation of  
the sentence 𝑦𝑥𝑏, for example 
𝑆
𝑃1→ 𝐴𝐵

𝑃2→𝑌𝑋𝐵
𝑃3→𝑌𝐵𝑍

𝑃5→𝑌𝑋𝑍
𝑃6→𝑦𝑋𝑍

𝑃4→𝑦𝑋𝐵
𝑃7→ 

𝑃7→𝑦𝑥𝐵
𝑃8→𝑦𝑥𝑏. The obtained derivation graph is 

depicted in Figure 11. 
Inside each node there is written a value 

that the node maps to in the grammar 𝐺.  
For instance, 𝑀��𝑃�6� = 𝑃4 and 𝑀��𝛾�8,1� = 𝑦. 

The derivation steps represented by 𝑃�3, 𝑃�4 
and 𝑃�6 form a weak cycle in the derivation.  
The subnet starting in the layer 2 with 2 nodes 
mapping to 𝑋 and 𝐵 ends up with another two 
nodes in the layer 6 mapping to exactly the same 
𝑋 and 𝐵. This subnet is absolutely independent 
of the other part of the derivation net. No step  
in this subnet could affect the steps outside it and 
vice versa. Hence, the steps in question can be 
omitted without affecting the whole derivation. 
Thus, a reduced derivation graph can be 
obtained – as depicted in Figure 12 (nodes are 
reindexed). The derivation itself shortens to 
𝑆
𝑃1→ 𝐴𝐵

𝑃2→𝑌𝑋𝐵
𝑃6→𝑦𝑋𝐵

𝑃7→𝑦𝑥𝐵
𝑃8→𝑦𝑥𝑏.  

 … … … 

 

  

 

  

… 

 

… 

 

 

 

… … 

 

 

 

 

 
𝛾�𝑘,1 
 

𝛾�𝑘,2 
 

… … 

𝛾�𝑘+1,1 𝛾�𝑘+1,𝐽𝑘+1 𝛾�𝑘+1,𝑥+1 𝛾�𝑘+1,𝑥+𝑞 

𝛾�𝑘,𝐽𝑘 𝛾�𝑘,𝑥+𝑝 𝛾�𝑘,𝑥+1 

𝑃�𝑘+1 
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Fig. 11. A derivation graph example 

 
Fig. 12. A derivation graph reduction example 

▲ 
 
Lemma 1 
The derivation graph 𝐷𝜔(𝐺) is planar. 
 
Proof 
Indeed, the first layer of nodes (consisting of  
the starting node only) is planar by its nature. 
Assume now that the first 𝑘 layers, with 
production nodes between each two adjacent of 
them, form a planar graph, say 𝐺𝑘. Assume also 
that no arrow of 𝐺𝑘 protrudes from the area 
limited by the “very outer” nodes of 𝐺𝑘 and that 
the nodes of the 𝑘-th layer are amongst those 
very outer ones. Now, extend 𝐺𝑘 to 𝐺𝑘+1  
by adding the production node 𝑃�𝑘+1, symbol 
nodes 𝛾𝑘+1,1,𝛾𝑘+1,2, … , 𝛾𝑘+1,𝐽𝑘+1 and all  
the arrows between them, as depicted in figure 
10. Next, join them to 𝛾𝑘,1,𝛾𝑘,2, … , 𝛾𝑘,𝐽𝑘 with 
appropriate arrows. Since 𝐺𝑘 is planar and  
the new nodes and arrows, which itself would 
form a planar graph, are connected to “outer” 
nodes 𝛾𝑘+1,1,𝛾𝑘+1,2, … , 𝛾𝑘+1,𝐽𝑘, not by-passed 
by any arrow of 𝐺𝑘, the resulting 𝐺𝑘+1 is planar. 
Moreover, now all the nodes of the (𝑘 + 1)-th 
layer are those amongst the most outer ones.  
By induction, we conclude as in the lemma. ∎ 
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Similarly to the definition of grammar net, 
that extended the grammar graph with some 
labelling, we can now extend the definition of 
derivation graph to the derivation net.  
A labelling of the form 
 

𝔏�𝐺𝜔:𝑉� → 𝐸𝐼  (26) 
 
over the derivation graph 𝐷𝜔(𝐺) together with 
𝐷𝜔(𝐺) itself is a derivation net. 

Each node in the derivation graph has  
a label assigned to it, thus forming a derivation 
net. The interpretation is similar to the labelling 
of grammar graphs except that it allows each 
node to have exactly one label. Similar are also 
the rules of deriving new labels from those 
already existing, except that: 
a) new labels are successively derived upwards 

layer by layer, starting from the last one, 
b) the labels derived in the (𝑘 − 1)-th layer are 

based only on the labels from the 𝑘-th layer, 
c) the labels in the last layer are chosen 

arbitrarily. 
It will be shown in more details in the next 
sections along with a possible way to do such 
labelling, i.e. assigning exactly one label to each 
node. 

Let us now define another concept – 
quotient derivation net. Let a pair 〈𝐷𝜔(𝐺),𝔏�𝐺𝜔〉 
of a derivation graph and a labelling on it be  
a derivation net. The quotient derivation net 
over a mapping 𝑀� is a net constructed by 
contracting those nodes from 𝐷𝜔(𝐺) that are 
mapped by 𝑀� to the same symbol or production 
in 𝐺. It is worth noting here that the derivation 
graph 𝐷𝜔(𝐺), and hence a derivation net defined 
on it, holds an implicit information on  
the incoming and outgoing arrows in the order of 
nodes in each layer. Likewise in the grammar 
graph, it is required that the order of all  
the arrows incoming and outgoing from 
production-related nodes after the contraction is 
preserved. Thus, the quotient derivation net is 
defined as a pair 〈𝐺�𝜔,𝑀� ,𝔏𝐺�𝜔,𝑀�

〉 where 
 

𝐺�𝜔,𝑀� = 〈𝑉�𝜔,𝑀� ,𝛤�𝑆,𝜔,𝑀� ,𝛤�𝑁,𝜔,𝑀�
−1 〉  (27) 

 
is a graph of a structure similar to that  
of the grammar graph and 𝔏𝐺�𝜔,𝑀�

 is a labelling  
over it. The above graph is constructed  
as follows:  

𝑉�𝜔,𝑀� = 𝑉�𝑆,𝜔,𝑀� ∪ 𝑉�𝑃,𝜔,𝑀�   (28) 
 
is the set of nodes in 𝐺�𝜔,𝑀�  where 
 
𝑉�𝑆,𝜔,𝑀� = �𝑣 ∈ 𝑉𝑁 ∪ 𝑉𝑇 | ∃𝑣�∈𝑉�𝑀�(𝑣�) = 𝑣�  (29) 

 

is the subset of those contracted nodes that 
correspond to symbols in the grammar 𝐺 and 
 

𝑉�𝑃,𝜔,𝑀� = �𝑝 ∈ 𝑃 | ∃𝑣�∈𝑉�𝑀�(𝑣�) = 𝑝�  (30) 
 
is, accordingly, the subset of those that 
correspond to productions in 𝐺. Likewise in  
the definition of grammar graph, the nodes are 
identified with productions and symbols in  
the underlying grammar as this should never 
lead to ambiguity. Next, 

𝛤�𝑆,𝜔,𝑀� :𝑉�𝑃,𝜔,𝑀� → �𝑉�𝑆,𝜔,𝑀��
+  (31) 

 
is a mapping that assigns ordered sequences of 
symbol-related nodes to each production-related 
ones. Every sequence represents the order in 
which arrows outgoing from a production node 
point to symbol nodes. Similarly, 

𝛤�𝑁,𝜔,𝑀�
−1 :𝑉�𝑃,𝜔,𝑀� → �𝑉�𝑆,𝜔,𝑀��

+  (32) 
 
is a “reversed” mapping for arrows incoming 
into the production-related nodes and represent 
their order. Moreover, for all 𝑃𝑖 ∈ 𝑉�𝑃,𝜔,𝑀�   
of the form 𝑃𝑖:𝜇1𝜇2 …𝜇𝑚 → 𝛾1𝛾2 … 𝛾𝑛 we have 
 

𝛤�𝑆,𝜔,𝑀�(𝑃𝑖) = 〈𝛾1,𝛾2, … , 𝛾𝑛〉  (33) 
and 

𝛤�𝑁,𝜔,𝑀�
−1 (𝑃𝑖) = 〈𝜇1, 𝜇2, … , 𝜇𝑚〉.  (34) 

 
The above formulas are similar to that of 

the grammar graph, compare (2) and (3). We can 
always contract the underlying derivation graph 
(or net) in this way because all the production 
nodes in 𝐷𝜔(𝐺) that maps with 𝑀� to the same 
production in 𝐺 must have predecessors and 
successors that, in their order, map to the same 
symbols in 𝐺. 𝐷𝜔(𝐺) always correspond to  
a correct derivation of 𝜔, so the graph itself must 
have the above property. 

On the other hand, the contracted graph 
does not contain any arrow between two 
different symbol nodes. This, in turn, is a result 
of the fact that the only such arrows in  
the underlying derivation graph (or net) are  
those that link two corresponding nodes in 
adjacent layers. Both nodes in such pairs, 
though, always map with 𝑀� to the same symbol 
in 𝐺. Thus, 𝛤�𝑆,𝜔,𝑀�  and 𝛤�𝑁,𝜔,𝑀�

−1  cover all  
the necessary arrows in 𝐺�𝜔,𝑀� . 

Due to its definition, production related 
nodes in 𝐺�𝜔,𝑀�  are also production related nodes 
in 𝐺�. So do the symbol nodes and, moreover,  
the predecessors and successors of each 
production related node, along with their orders, 
are the same as in 𝐺�. Thus, we obtain  
the following result: 
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Corollary 1 
𝐺�𝜔,𝑀�  is a subgraph of 𝐺�. 
 
As regards to the labelling 𝔏𝐺�𝜔,𝑀�

, this is defined 
as follows: 

𝔏𝐺�𝜔,𝑀�
(𝑣) = �𝔏�𝐺𝜔(𝑣′) | 𝑀�(𝑣′) = 𝑣�. (35) 

All the nodes in 𝐷𝜔(𝐺) that map with 𝑀�  
to the same node in 𝐺�𝜔,𝑀�  “transfer” their labels 
into the set of labels assigned to the resulting 
contracted node. The above definitions of  
the contracted derivation graph and the labelling 
on it both form the definition of the quotient 
derivation net. 
 
5. Membership problem 
 
Let 𝔏𝐺𝜔 denote a “minimal” labelling over 𝐺� with 
respect to the sentence 𝜔 = 𝑤1𝑤2 …𝑤𝑝 ∈ (𝑉𝑇)𝑝 
of length 𝑝  such that 

𝔏𝐺𝜔(𝑤𝑙) = {〈#; 𝑙, 𝑙; #〉}  (36) 
and 

 𝔏𝐺𝜔(𝑠) = ∅     (37) 
 
where 𝑠 ≠ 𝑤𝑙, for all 𝑙 = 1,2, … ,𝑝. Every label 
from the initial labelling defined above can be 
unambiguously assigned to a particular node in 
the last (𝑧-th) layer of 𝐷𝜔(𝐺). It means that 
〈#; 1,1; #〉, 〈#; 2,2; #〉, …, 〈#; 𝐽𝑧, 𝐽𝑧; #〉, where 
𝐽𝑧 = 𝑝, correspond to the nodes 𝛾�𝑧,1, 𝛾�𝑧,2, …, 
𝛾�𝑧,𝐽𝑧, respectively. So, the labelling 𝔏�𝐺𝜔 is 
correctly defined for this layer, i.e. 
 

𝔏�𝐺𝜔�𝛾�𝑧,𝑙� = 〈#; 𝑙, 𝑙; #〉  (38) 
 
Now, the following rules applied recursively to 
the nodes of 𝐷𝜔(𝐺) layer by layer will correctly 
define all the values of 𝔏�𝐺𝜔: 
a) (rewriting rule) If a symbol node 𝛾�𝑖+1,𝑗′  is 
the direct successor of another symbol node 𝛾�𝑖,𝑗, 
i.e. 〈𝛾�𝑖,𝑗, 𝛾�𝑖+1,𝑗′〉 ∈ 𝐸�, then we let 𝔏�𝐺𝜔�𝛾�𝑖,𝑗� = 
= 𝔏�𝐺𝜔�𝛾�𝑖+1,𝑗′�. Recall that this is possible only if 
both of them maps with 𝑀� to the same symbol  
in 𝐺 and they correspond to those parts of 𝛾𝑖 and 

𝛾𝑖+1 in the derivation step 𝛾𝑖
𝑃𝑎𝑖+1�⎯⎯�𝛾𝑖+1 that are 

not affected by 𝑃𝑎𝑖+1. Moreover, after  
the contraction to a quotient derivation net, both 
nodes will reduce to the same node with one 
label. 
b) (joining rule) If symbol nodes 𝛾�𝑖+1,𝑥+1, 
𝛾�𝑖+1,𝑥+2, …, 𝛾�𝑖+1,𝑥+𝑚 are all direct successors 
(in the above order) of a production node 𝑃�𝑖+1 
and the labels assigned to them by 𝔏�𝐺𝜔 are 
〈𝜓𝑥+1,𝑎𝑥+1,𝑏𝑥+1,𝜑𝑥+1〉, 
〈𝜓𝑥+2,𝑎𝑥+2,𝑏𝑥+2,𝜑𝑥+2〉, 

⋮ 
〈𝜓𝑥+𝑚,𝑎𝑥+𝑚,𝑏𝑥+𝑚,𝜑𝑥+𝑚〉, respectively, then 
assign 〈𝜓𝑥+1,𝑎𝑥+1,𝑏𝑥+𝑚,𝜑𝑥+𝑚〉 to 𝑃�𝑖+1, i.e. we 
let 𝔏�𝐺𝜔�𝑃�𝑖+1� = 〈𝜓𝑥+1,𝑎𝑥+1,𝑏𝑥+𝑚,𝜑𝑥+𝑚〉. 
c) (splitting rule) If symbol nodes 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, 
…, 𝛾�𝑖,𝑥+𝑚 are all direct predecessors  
(in the above order) of a production node 𝑃�𝑖+1 
that is assigned a label 〈𝜓, 𝑎, 𝑏,𝜑〉  
then assign the labels 〈𝜓,𝑎, 𝑏, 〈𝑎, 1, �̂�, 𝑏〉〉, 
〈〈𝑎, 1, �̂�, 𝑏〉,𝑎, 𝑏, 〈𝑎, 2, �̂�, 𝑏〉〉,  
〈〈𝑎, 2, �̂�, 𝑏〉,𝑎, 𝑏, 〈𝑎, 3, �̂�, 𝑏〉〉, 
⋮ 
〈〈𝑎,𝑚 − 2, �̂�, 𝑏〉,𝑎, 𝑏, 〈𝑎,𝑚− 1, �̂�, 𝑏〉〉, 
〈〈𝑎,𝑚 − 1, �̂�, 𝑏〉,𝑎, 𝑏,𝜑〉, 
where �̂� = 𝑀��𝑃�𝑖+1�, to those nodes, 
respectively. 
 
Definition 4 
Let 𝛾�𝑖,𝑗, 𝛾�𝑖,𝑗+1 be two neighbouring symbol 
nodes in the i-th layer of some derivation net. 
Let 〈𝜓𝑖,𝑗,𝑎𝑖,𝑗, 𝑏𝑖,𝑗,𝜑𝑖,𝑗〉 and 
〈𝜓𝑖,𝑗+1,𝑎𝑖,𝑗+1,𝑏𝑖,𝑗+1,𝜑𝑖,𝑗+1〉 be two labels 
assigned to them. The property of neighbouring 
second order labels equality holds, if 𝜑𝑖,𝑗 = 
= 𝜓𝑖,𝑗+1. ● 
 
Lemma 2 
For each two neighbouring labels, in every layer, 
the neighbouring second order labels equality 
holds. Moreover, the left second order label in 
the first node in each layer is the same through 
all the layers, so do the right second order labels 
of the last nodes. 
 
Proof 
First, observe that the lemma is true for the last 
layer – recall (36). Next, assume, that  
the above property holds for the (𝑖 + 1)-th layer. 
Let 𝛾�𝑖,1, 𝛾�𝑖,2, …, 𝛾�𝑖,𝑥 be direct predecessors of 
𝛾�𝑖+1,1, 𝛾�𝑖+1,2, …, 𝛾�𝑖+1,𝑥. It is easily seen that  
the very first second order labels put on the left 
are the same. Since 𝔏�𝐺𝜔�𝛾�𝑖,𝑙� = 𝔏�𝐺𝜔�𝛾�𝑖+1,𝑙�, for 
𝑙 = 1, 2, … , 𝑥, the property of neighbouring 
second order labels equality still holds within 
those first 𝑥 nodes in the 𝑘-th layer. Let now 
𝛾�𝑖+1,𝑥+1, 𝛾�𝑖+1,𝑥+2, …, 𝛾�𝑖+1,𝑥+𝑞 be all the direct 
successors (in that order) of 𝑃�𝑖+1. According to 
the joining rule for the derivation nets the left 
second order label of 𝑃�𝑖+1 is the same as the left 
second order label of 𝛾�𝑖+1,𝑥+1 and the right 
second order label of 𝑃�𝑖+1 is the same as  
the right second order label of 𝛾�𝑖+1,𝑥+𝑞.  
Let 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, …, 𝛾�𝑖,𝑥+𝑝 be directs 
predecessors of 𝑃�𝑖+1. Now, according to  
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the splitting rule for the derivation nets, the left 
second order label of 𝛾�𝑖,𝑥+1 is the same as  
the left second order label of 𝑃�𝑖+1 and hence  
the same as the left one of 𝛾�𝑖+1,𝑥+1.  
Since the neighbouring second order labels 
equality holds by inductive hypothesis for  
the pair  𝛾�𝑖+1,𝑥 and 𝛾�𝑖+1,𝑥+1 we deduce that  
the same property holds for the pair 𝛾�𝑖,𝑥 and 
𝛾�𝑖,𝑥+1. The splitting rule also imposes  
the neighbouring second order labels equality on 
each neighbouring pair within 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, …, 
𝛾�𝑖,𝑥+𝑝. The right second order label of 𝛾�𝑖,𝑥+𝑝  
is the same as that of 𝑃�𝑖+1 and hence – that  
of 𝛾�𝑖+1,𝑥+𝑞. By inductive hypothesis,  
the neighbouring second order labels equality 
holds for the pair  𝛾�𝑖+1,𝑥+𝑞 and 𝛾�𝑖+1,𝑥+𝑞+1, from 
which it can be deduced that this property  
also holds for the pair 𝛾�𝑖,𝑥+𝑝 and 𝛾�𝑖,𝑥+𝑝. Finally, 
since 𝛾�𝑖,𝑥+𝑝+1, 𝛾�𝑖,𝑥+𝑝+2, …, 𝛾�𝑖,𝐽𝑖 are all  
the direct predecessors of 𝛾�𝑖+1,𝑥+𝑞+1, 
𝛾�𝑖+1,𝑥+𝑞+2, …, 𝛾�𝑖+1,𝐽𝑖+1, respectively, and they 
inherit the labels according to the rewriting rule, 
the property holds also for each neighbouring 
pair within 𝛾�𝑖,𝑥+𝑝+1, 𝛾�𝑖,𝑥+𝑝+2, …, 𝛾�𝑖,𝐽𝑖. Thus, by 
induction, it can be deduced that the property of 
neighbouring second order labels equality holds 
within each layer of the derivation net. The very 
last second order labels in each layer are  
the same because they are rewritten. 

In a special case where 𝑥 =  0 it is easily 
seen that the left second order labels of the first 
nodes in the two layers are the same indeed. 
Symmetrically, it is also easily seen for the case 
where 𝑃�𝑖+1 is incident with both last nodes in 
those layers, i.e. for 𝑥 =  𝐽𝑖+1 − 𝑞 + 1 = 
= 𝐽𝑖 − 𝑝 + 1. ∎ 
 
Example 5 
Let the grammar 𝐺 be as in  
the example 4. Figure 13 shows the layers of  
the derivation graph for sentence 𝑦𝑥𝑥. The nodes 
in each layer are labelled with subsequent 
generations of labels, some of which are just 
copied from the previously labelled layer 
(rewriting rule). Figure 14, on the other hand, 
shows graph 𝐺’, a subgraph of 𝐺, that was 
obtained after the contraction of the derivation 
graph. Its labelling is only a part of how can 𝐺 
be labelled. ▲ 

 
 

Fig. 13. An example of labels on a derivation graph 
 
 

 
 

Fig. 14. An example of derivation graph contraction 
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Lemma 3 
If the label assigned to some node in 𝐷𝜔(𝐺), 
according to the labelling closure routine for 
derivation graphs, is of the form 〈𝜓,𝑎, 𝑏,𝜑〉, 
then 𝑎 is the index of the leftmost and 𝑏 is  
the index of the rightmost node in the last layer 
that are accessible via directed paths from  
this labelled node. Moreover, for a symbol node 
𝛾�𝑖,𝑗 with assigned label 〈𝜓𝑗, 𝑎𝑗, 𝑏𝑗,𝜑𝑗〉 and  
a symbol node 𝛾�𝑖,𝑙 with assigned label 
〈𝜓𝑙 ,𝑎𝑙 , 𝑏𝑙 ,𝜑𝑙〉, where 𝑗 < 𝑙, we have 𝑎𝑗 ≤ 𝑎𝑙 and 
𝑏𝑗 ≤ 𝑏𝑙. 
 
Proof 
The property is obvious for the last layer as it 
results from the initial labelling structure. Now, 
assume that the property holds for all  
the nodes in the (𝑖 + 1)-th layer. The nodes 𝛾�𝑖,1 
through 𝛾�𝑖,𝑥 have only one successor each, i.e. 
𝛾�𝑖+1,1 through 𝛾�𝑖+1,𝑥, respectively, and inherit 
their labels. Hence, their labels still hold  
the property in question. Similarly, the nodes 
𝛾�𝑖,𝑥+𝑝+1 through 𝛾�𝑖,𝐽𝑖 inherit the labels from 
their single successors 𝛾�𝑖+1,𝑥+𝑞+1 through 
𝛾�𝑖+1,𝐽𝑖+1, respectively, and the property in 
question holds also within this group. Now,  
the production node 𝑃�𝑖+1 between the two layers 
also receives a label of the form 
〈𝜓𝑖+1

(𝑃) ,𝑎𝑖+1
(𝑃) ,𝑏𝑖+1

(𝑃) ,𝜑𝑖+1
(𝑃) 〉. It results from  

the joining rule for the derivation nets that 
𝑎𝑖+1

(𝑃) = min�𝑎𝑖+1,𝑥+1,𝑎𝑖+1,𝑥+2, … ,𝑎𝑖+1,𝑥+𝑞� 
𝑏𝑖+1

(𝑃) = max�𝑏𝑖+1,𝑥+1,𝑏𝑖+1,𝑥+2, … , 𝑏𝑖+1,𝑥+𝑞� 
  (39) 

where 𝑎𝑖+1,𝑥+𝑢, 𝑏𝑖+1,𝑥+𝑢, are determined by  
the labels 〈𝜓𝑖+1,𝑥+𝑢, 𝑎𝑖+1,𝑥+𝑢, 𝑏𝑖+1,𝑥+𝑢,
  𝜑𝑖+1,𝑥+𝑢 assigned to 𝛾𝑖+1,𝑥+𝑢, for  
𝑢 = 1,2, … , 𝑞. Indeed, by the inductive 
hypothesis, 𝑎𝑖+1

(𝑃) = 𝑎𝑖+1,𝑥+1 ≤ 𝑎𝑖+1,𝑥+2 ≤ ⋯ ≤
𝑎𝑖+1,𝑥+𝑞 and 𝑏𝑖+1,𝑥+1 ≤ 𝑏𝑖+1,𝑥+2 ≤ ⋯ ≤
𝑏𝑖+1,𝑥+𝑞 = 𝑏𝑖+1

(𝑃) . Since all the directed paths that 
start in 𝑃�𝑖+1 and end up in the last layer go 
through one of 𝛾�𝑖+1,𝑥+1, 𝛾�𝑖+1,𝑥+2, …, 𝛾�𝑖+1,𝑥+𝑞, 
the property in question holds for 𝑃�𝑖+1 and its 
label. Finally, all the direct predecessors of 𝑃�𝑖+1, 
say 𝛾�𝑖,𝑥+1, 𝛾�𝑖,𝑥+2, …, 𝛾�𝑖,𝑥+𝑝, are assigned  
labels 〈𝜓𝑖,𝑥+𝑣,𝑎𝑖+1

(𝑃) ,𝑏𝑖+1
(𝑃) ,𝜑𝑖,𝑥+𝑣〉, 𝑣 = 1, 2, … ,𝑝.  

Since the pair of values 𝑎𝑖+1
(𝑃)  and 𝑏𝑖+1

(𝑃)   
are inherited by them from 𝑃�𝑖+1 and the only 
paths starting from them and ending up  
in the last layer go through 𝑃�𝑖+1, the property 
holds for them as well. Thus, by induction,  
all the layers of nodes have the property stated in 
the lemma. ∎ 

Corollary 2 
〈#; 1, |𝜔|; #〉 is the root label in  
a derivation net 〈𝐷𝜔(𝐺),𝔏�𝐺𝜔〉, i.e. assigned to  
the “starting” node 𝑆, if the net is initially 
labelled as in (38). This is a direct result from 
the last two lemmas. The left and right second 
order labels are inherited from the leftmost and 
the rightmost second order labels in the last 
layer, while 1 and |𝜔| are, of course, the indices 
of the first and the last symbol in |𝜔| and hence 
the indices of the first and the last node in  
the last layer. 
 
Lemma 4 
Let 𝜔 be any correct sentence in 𝐺 and 𝐷𝜔(𝐺) 
with 𝔏�𝐺𝜔 be its derivation net, where the labelling 
𝔏�𝐺𝜔 was generated from the initial labelling using 
rewriting, joining and splitting rules for 
derivation nets. If 𝔏�𝐺𝜔(𝑣) = 〈𝜓,𝑎, 𝑏,𝜑〉 for some 
node 𝑣, then 〈𝜓,𝑎, 𝑏,𝜑〉 ∈ 𝔏𝐺𝜔���� �𝑀�(𝑣)�. In other 
words, 𝔏𝐺�𝜔,𝑀�

≼ 𝔏𝐺𝜔����, where 𝐺�𝜔,𝑀�  with 𝔏𝐺�𝜔,𝑀�
 is 

the quotient derivation net of 𝐷𝜔(𝐺) with 𝔏�𝐺𝜔 
over 𝑀�. 
 
Proof 
First, observe that for the last (𝑘-th) layer 
𝔏�𝐺𝜔�𝛾�𝑘,𝑗� = 〈#; 𝑗, 𝑗; #〉 and this belongs to 
𝔏𝐺𝜔 �𝑀��𝛾�𝑘,𝑗��, for 𝑗 = 1,2, … , 𝐽𝑘 and 𝐽𝑘 = |𝜔|. 
Of course, 𝔏𝐺𝜔���� ≽ 𝔏𝐺𝜔, so 〈#; 𝑗, 𝑗; #〉 ∈ 
∈ 𝔏𝐺𝜔���� �𝑀��𝛾�𝑘,𝑗�� as well. Assume now that 

𝔏�𝐺𝜔�𝛾�𝑖,𝑗� ∈ 𝔏𝐺𝜔���� �𝑀��𝛾�𝑖,𝑗��, for all 𝑗 = 1,2, … , 𝐽𝑖, 
where 𝑖 is an index of some layer in 𝐷𝜔(𝐺).  
Let 𝛾�𝑖,𝑥𝑖+1, 𝛾�𝑖,𝑥𝑖+2,…, 𝛾�𝑖,𝑥𝑖+𝑞𝑖 be all the direct 
successors (in that order) of 𝑃�𝑖 and 
〈𝜓𝑖,𝑥𝑖+1,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+1,𝜑𝑖,𝑥𝑖+1〉,
〈𝜓𝑖,𝑥𝑖+2,𝑎𝑖,𝑥𝑖+2,𝑏𝑖,𝑥𝑖+1,𝜑𝑖,𝑥𝑖+2〉, 
… 
〈𝜓𝑖,𝑥𝑖+𝑞𝑖 ,𝑎𝑖,𝑥𝑖+𝑞𝑖 ,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖,𝑥𝑖+𝑞𝑖〉 be their 
labels, respectively. Recall that the above labels 
hold the neighbouring second order label 
equality property, i.e.  𝜑𝑖,𝑥𝑖+1 = 𝜓𝑖,𝑥𝑖+2, 
 𝜑𝑖,𝑥𝑖+2 = 𝜓𝑖,𝑥𝑖+3, … , 𝜑𝑖,𝑥𝑖+𝑞𝑖−1 = 𝜓𝑖,𝑥𝑖+𝑞𝑖. 
The joining rule for the derivation nets assigns 
〈𝜓𝑖,𝑥𝑖+1, 𝑎𝑖,𝑥𝑖+1, 𝑏𝑖,𝑥𝑖+𝑞𝑖 , 𝜑𝑖,𝑥𝑖+𝑞𝑖〉 to 𝑃�𝑖.  
On the other hand, 〈𝜓𝑖,𝑥𝑖+𝑗, 𝑎𝑖,𝑥𝑖+𝑗, 𝑏𝑖,𝑥𝑖+𝑗,
𝜑𝑖,𝑥𝑖+𝑗〉 ∈ 𝔏𝐺

𝜔���� �𝑀��𝛾�𝑖,𝑥𝑖+𝑗��, for 𝑗 = 1,2, … , 𝐽𝑖. 
Since 𝑀��𝛾�𝑖,𝑥𝑖+1�, 𝑀��𝛾�𝑖,𝑥𝑖+2�, …, 𝑀��𝛾�𝑖,𝑥𝑖+𝑞𝑖� 
are direct successors (in that order) of 𝑀��𝑃�𝑖�  
in 𝐺�, the joining rule for grammar nets produces  
a new label (of course, unless it has already 
existed) for 𝑀��𝑃�𝑖�. This is 〈𝜓𝑖,𝑥𝑖+1, 𝑎𝑖,𝑥𝑖+1,
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𝑏𝑖,𝑥𝑖+𝑞𝑖 , 𝜑𝑖,𝑥𝑖+𝑞𝑖〉 and is equal to 𝔏�𝐺𝜔�𝑃�𝑖�.  
Hence, 𝔏�𝐺𝜔�𝑃�𝑖� ∈ 𝔏𝐺𝜔���� �𝑀��𝑃�𝑖�� holds. Finally, let 
𝛾�𝑖−1,𝑥𝑖−1+1,  𝛾�𝑖−1,𝑥𝑖−1+2, … ,  𝛾�𝑖−1,𝑥𝑖−1+𝑝𝑖−1 be 
all the direct predecessors (in that order) of 𝑃�𝑖. 
According to the splitting rule for derivation nets 
those nodes are assigned labels 
〈𝜓𝑖−1,𝑥𝑖−1+1,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖−1,𝑥𝑖−1+1〉, 
〈𝜓𝑖−1,𝑥𝑖−1+2,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖−1,𝑥𝑖−1+2〉, 
… 
〈𝜓𝑖−1,𝑥𝑖−1+𝑝𝑖−1 ,𝑎𝑖,𝑥𝑖+1,𝑏𝑖,𝑥𝑖+𝑞𝑖 ,𝜑𝑖−1,𝑥𝑖−1+𝑝𝑖−1〉, 
respectively. On the other hand, the splitting rule 
for the grammar nets adds exactly the same 
labels to the predecessors of 𝑀��𝑃�𝑖� in 𝐺�, 
preserving, of course, their respective order.  
All the other nodes in the (𝑖 − 1)-th layer of 
𝐷𝜔(𝐺) inherit their labels from respective nodes 
in the 𝑖-th layer and maps with 𝑀� to the same 
node in 𝐺� as the node they inherited their label 
from. These labels, though, have already been 
taken into account in 𝔏𝐺𝜔����. By induction, it is 
easily deduced that 𝔏�𝐺𝜔(𝑣) ∈ 𝔏𝐺𝜔���� �𝑀�(𝑣)� for 
every node 𝑣 in 𝐷𝜔(𝐺). ∎ 
 
Theorem 1 
Let 𝜔 be a correct sentence in the language 
generated by a grammar 𝐺, i.e. 𝜔 ∈ 𝐿(𝐺), then 
 〈#; 1, |𝜔|; #〉 ∈ 𝔏𝐺𝜔(𝑆). 
 
Proof 
This directly results from the previously  
proved lemmas. 𝔏�𝐺𝜔�𝛾�1,1� = 〈#; 1, |𝜔|; #〉 and 
𝔏�𝐺𝜔�𝛾�1,1� ∈ 𝔏𝐺𝜔���� �𝑀��𝛾�1,1��, where 𝑀��𝛾�1,1� = 𝑆. 
∎ 
 
The above theorem gives a tool to check if  
a particular sentence can potentially be a correct 
one in 𝐺, i.e. having any correct derivation 
starting from 𝑆. If 〈#; 1, |𝜔|; #〉 is not found  
for 𝑆, then the sentence 𝜔 obviously does not 
belong to 𝐿(𝐺). On the other hand,  
if 〈#; 1, |𝜔|; #〉 is found for 𝑆 indeed, then 
further procedure must be undertaken to check 
its correctness. 
 
6. Algorithm 
 
The algorithm is based on the labelling closure 
routine for the initial labelling of a given 
grammar graph. The following quasi-language 
describes its version for a given 2nd order non- 
-contracting grammar 𝐺: 
 
input txt: String; 
input grammar G; 
type Label2nd: (left: Int, prod: Production, 

                right: Int); 
type Label: (leftlbl: Label2nd, left: Int, 
             right: Int, rightlbl: Label2nd); 
let lst: List of (lbl: Label, nod: Node); 
let crs: Int = 1; 
let prods = set of all production nodes; 
let symbs = set of all symbol nodes; 
let lbl: Label; 
for each i in 1..|ω| 
  for each s in symb 
    if txt(i) = s then 
      append (((i–1, nil, i), i, i,  
               (i, nil, i+1)), s) 
          to lst; 
    end if; 
  end for; 
end for; 
while crs <= length of lst 
  let n := lst(crs).nod; 
  if n is symbol node then 
    for each p in prods 
      if p has two children then 
        for each c in 1..crs-1 
          let s := lst(c).nod; 
          let newlbl: Label = nil; 
          if n is left child of p and 
            s is right child of p then 
            if n.rightlbl = s.leftlbl then 
              let lbl := (n.leftlbl, n.left, 
                          s.right, s.rightlbl); 
              if (lbl, p) not in lst then 
                append (lbl, p) to lst; 
              end if; 
            end if; 
          elsif n is right child of p and 
                s is left child of p then 
            if n.leftlbl = s.rightlbl then 
              let lbl := (s.leftlbl, s.left, 
                          n.right, n.rightlbl); 
              if (lbl, p) not in lst then 
                append (lbl, p) to lst; 
              end if; 
            end if; 
          end if; 
        end for; 
      elsif p has one child then 
        if n is child of p then 
          let lbl := (n.leftlbl, n.left, 
                      n.right, n.rightlbl); 
          if (lbl, p) not in lst then 
            append t (lbl, p) to lst; 
          end if; 
        end if; 
      end if; 
    end for; 
  elsif n is production node then 
    for each s in symbs 
      if s is left parent of n then 
        let lbl := (n.leftlbl, n.left, n.right, 
                    (n.left, n, n.right)); 
        if (lbl, s) not in lst then 
          append (lbl, s) into lst; 
        end if; 
      elsif s is right parent of n then 
        let lbl := ((n.left, n, n.right), 
                    n.left, n.right, n.rightlbl); 
        if (lbl, s) not in lst then 
          append (lbl, s) into lst; 
        end if; 
      elsif s is the only parent of n then 
        let lbl := (n.leftlbl, n.left, 
                    n.right, n.rightlbl); 
        if (lbl, s) not in lst then 
          append (lbl, s) into lst; 
        end if; 
      end if; 
    end for; 
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  end if; 
  crs := crs + 1; 
end while; 
         
The main data structure in the above algorithm is 
a list of pairs consisting of a label and node 
reference (whether it is production node,  
symbol node or empty reference). A label 
〈〈𝑎, 1, 𝜁, 𝑏〉, 𝑐,𝑑, 〈𝑒, 1, 𝜉,𝑓〉〉 is represented by 
((a,ζ,b),c,d,(e,ξ,f)) in this data structure. If 𝜁 or 𝜉 
is #, then it is represented by the empty 
reference (nil). The input string txt is first 
split into single characters corresponding to 
terminal symbol nodes. All the pairs of labels 
with nil in the second order labels (equivalent 
to #) and unit range corresponding to a particular 
character combined with the corresponding 
terminal symbol node references are put to list. 
Thus, the initial labelling is represented there. 

Next, the algorithm finds new labels based 
on the previously found ones. This is done 
according to the labelling closure rules. Newly 
found labels are added at the end of the list.  
In parallel, a cursor crs (marker) is moved step 
by step through the list to mark the last element 
in the list for which there have been generated 
new labels based on all the already existing in 
the list. That is to say, for a label currently 
pointed by the marker, all the previous ones in 
the list are tested if they “match” to produce new 
ones. The new ones, are appended to the list if 
they have not existed yet there. This is similar to 
the breadth-first search algorithm. 

The number of possible labels is finite.  
The number 𝑀𝐼𝐼 of possible second order labels 
is limited with the following formula: 
 

𝑀𝐼𝐼 ≤ |𝜔|2(1 + |𝑃|).         (40)  
 
The number 𝑀𝐼𝐼 of possible first order labels is 
limited with the next formula: 
 

𝑀𝐼 ≤ |𝜔|2(𝑀𝐼𝐼)2  (41)  
 
Thus the number of labels is not greater than 
|𝜔|2�|𝜔|2(1 + |𝑃|)�2. Since, the number of 
production nodes in the grammar graph is finite, 
the number of possible pairs consisting of a label 
and a node is also finite. This number will never 
exceed |𝜔|2�|𝜔|2(1 + |𝑃|)�2(|𝑁| + |Σ| + |𝑃|). 
This implies that the algorithm will always stop 
at some point as it never produces any pair of 
label and node twice. 

As soon as the algorithm stops, one can 
check if there exists the special label 
((0,nil,1),1,|ω|,(|ω|,nil,|ω|+1)) in the list.  
If it does indeed, then the given string txt 

might be a correct sentence in the given 
grammar 𝐺. If it does not, then the sentence  
is obviously incorrect. 

To find more accurate limit for the number 
of possibly generated labels, note that second 
order labels will always have form 〈𝑎, 1,𝜃𝑖, 𝑏′〉, 
if put on the left of 〈𝑎, 𝑏〉, 𝑎 ≤ 𝑏′ ≤ 𝑏, and 
〈𝑎′, 1,𝜃𝑗,𝑏〉, if put on the right of 〈𝑎, 𝑏〉, 
𝑎 ≤ 𝑎′ ≤ 𝑏; 𝜃𝑖 and 𝜃𝑗 – some productions or  
the special mark # (represented by the empty 
reference nil). Thus, the overall form of a first 
order label with two second order labels is 
 

〈〈𝑎, 1,𝜃𝑖, 𝑏′〉,𝑎, 𝑏, 〈𝑎′, 1,𝜃𝑗,𝑏〉〉.     (42)  
 
There are four numbers that are linearly bounded 
by |𝜔|. Thus, the algorithm time and space is not 
worse than 𝒪(𝑛4 ∙ 𝑚2), where 𝑛 = |𝜔| and 
𝑚 = |𝑃| + 1. 
 
Example 6 
Let the grammar 𝐺 consist of the following 
production rules: 𝑃1:𝑆 → 𝑍𝐶, 𝑃2:𝑍 → 𝐴𝐵, 
𝑃3:𝐵 → 𝑋𝑌, 𝑃4:𝑋 → 𝐻𝐵, 𝑃5:𝑌 → 𝐵𝐺, 𝑃6:𝐺𝐵 →
𝐵𝐺, 𝑃7:𝐺𝐶 → 𝐶𝐶, 𝑃8:𝐵𝐻 → 𝐻𝐵, 𝑃9:𝐴𝐻 → 𝐴𝐴, 
𝑃10:𝐴 → 𝑎, 𝑃11:𝐵 → 𝑏 and 𝑃12:𝐶 → 𝑐. G 
contains the sentences of the form 𝑎𝑛𝑏𝑛𝑐𝑛, 
𝑛 ≥ 1. Let us trace the algorithm for 𝜔 = 𝑎𝑏𝑐. 
 |𝜔| = 3. The following table shows the 
content of the main list filled with initial 
labelling data and the values of the cursor after 
the each position: 
 

Pos. Newly added label Target 
node 

Cursor 
pos. 

1. ((0,nil,1),1,1,(1,nil,2)) a 1 
2. ((1,nil,2),2,2,(2,nil,3)) b 1 
3. ((2,nil,3),3,3,(3,nil,4)) c 1 

 
After the 3rd step the list contains 3 initial labels, 
paired with their corresponding nodes, and  
the cursor points to the first pair. Stopping 
condition is not met and the label 
((0,nil,1),1,1,(1,nil,2)) in the first position will 
be used to produce new ones, potentially 
matching it with any other label existing in  
the list. The target node 𝑎 is a symbol, thus  
a subsequent loop iterates over all  
the productions. For each production with two 
children all the previous elements of the list are 
compared if the two refer to 2 target nodes being 
children of this production with matching second 
order labels. Of course, there are no previous 
elements in the list as the cursor is at the first 
one. For one-child production it may, however, 
produce new pair of label and node. The node 𝑎 
is the only child of 𝑃10. The newly produced 
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label ((0,nil,1),1,1,(1,nil,2)) for 𝑃10, which in 
fact is the same as for 𝑎, is added to the list as 
this has not been added to the list yet. There are 
no more labels produced in the step and  
the cursor moves to the next position, i.e.  
the second one. So, the list is given new entry: 
 
4. ((0,nil,1),1,1,(1,nil,2)) P10 2 

 
The same routine for the second and third 
position in the list gives the following: 
 
5. ((1,nil,2),2,2,(2,nil,3)) P11 3 
6. ((2,nil,3),3,3,(3,nil,4)) P12 4 

 
Note that the cursor moved to beyond the initial 
labelling entries in the list. The stop condition is 
not met as the list was enlarged in the meantime 
with newly added labels. The algorithm 
continues. 

In the fourth step, the algorithm finds the 
target node P10 to be a production. Since its only 
parent is the symbol node 𝐴, new label 
((0,nil,1),1,1,(1,nil,2)) is proposed for this node. 
It is appended indeed to the list, paired with 𝐴, 
as it has not existed yet there. Similarly, 
((1,nil,2),2,2,(2,nil,3)) paired with 𝐵 and 
((2,nil,3),3,3,(3,nil,4)) paired with 𝐶 are added 
to the list: 
 
7. ((0,nil,1),1,1,(1,nil,2)) A 5 
8. ((1,nil,2),2,2,(2,nil,3)) B 6 
9. ((2,nil,3),3,3,(3,nil,4)) C 7 

 
Now, with the cursor pointing to the 7th position, 
that corresponds to a label assigned to 𝐴, the 
algorithm iterates over all productions and finds 
that 𝐴 is the left child of P2 and both the left and 
the right child of P9. Nevertheless, it does not 
match to any previously generated label, hence 
the cursor moves on to the next position without 
producing any new label: 
 
- - - 8 

 
The symbol node B is the right child of P2,  
the left child of P5 and the left child of P6. For 
P2, when iterating over the previous positions, 
the algorithm finds that the label 
((0,nil,1),1,1,(1,nil,2)) assigned to 𝐴 in the 7th 
position matches with ((1,nil,2),2,2,(2,nil,3)) in 
the current position and produces new label 
((0,nil,1),1,2,(2,nil,3)) for the node P2. This is 
the only matching for the 8th position, hence: 
 
10. ((0,nil,1),1,2,(2,nil,3)) P2 9 

The label ((2,nil,3),3,3,(3,nil,4)) assigned to 𝐶 
does not match to any previous label assigned to 
the children of P1 and P7, the only parents of 𝐶. 
The cursor moves to the next position: 
 
- - - 10 

 
Similarly, the next steps of the algorithm 
produces: 
 
11. ((0,nil,1),1,2,(2,nil,3)) Z 11 
12. ((0,nil,1),1,3,(3,nil,4)) P1 12 
13. ((0,nil,1),1,3,(3,nil,4)) S 13 
- - - 14 

 
and the algorithm stops finding the special label 
((0,nil,1),1,3,(3,nil,4)) for the initial symbol 𝑆, 
stating that 𝜔 = 𝑎𝑏𝑐 can potentially be a correct 
sentence in 𝐺. ▲ 
 
Example 7 
Let the grammar 𝐺 be as in  
the example 6. Let also 𝜔 = 𝑎𝑏𝑐𝑐.  
The following table shows all the steps of  
the algorithm: 
 

Pos. Newly added label Target 
node 

Cursor 
pos. 

1. ((0,nil,1),1,1,(1,nil,2)) a 1 
2. ((1,nil,2),2,2,(2,nil,3)) b 1 
3. ((2,nil,3),3,3,(3,nil,4)) c 1 
4. ((3,nil,4),4,4,(4,nil,5)) c 1 
5. ((0,nil,1),1,1,(1,nil,2)) P10 2 
6. ((1,nil,2),2,2,(2,nil,3)) P11 3 
7. ((2,nil,3),3,3,(3,nil,4)) P12 4 
8. ((3,nil,4),4,4,(4,nil,5)) P12 5 
9. ((0,nil,1),1,1,(1,nil,2)) A 6 
10. ((1,nil,2),2,2,(2,nil,3)) B 7 
11. ((2,nil,3),3,3,(3,nil,4)) C 8 
12. ((3,nil,4),4,4,(4,nil,5)) C 9 
- - - 10 
13. ((0,nil,1),1,2,(2,nil,3)) P2 11 
- - - 12 
14. ((2,nil,3),3,4,(4,nil,5)) P7 13 
15. ((0,nil,1),1,2,(2,nil,3)) Z 14 
16. ((2,nil,3),3,4,(3, P7,4)) G - 
17. ((3,P7,4),3,4, (4,nil,5)) C 15 
18. ((0,nil,1),1,3,(3,nil,4)) P1 16 
- - - 17 
- - - 18 
19. ((0,nil,1),1,3,(3,nil,4)) S 19 
- - - 20 

 
In the above routine the algorithm did not find 
the special label ((0,nil,1),1,4,(4,nil,5)) for  
the initial symbol 𝑆. This implies that 𝑎𝑏𝑐𝑐 is 
not a correct sentence in the given grammar. ▲ 
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7. Conclusion 
 
The idea of the algorithm presented in this paper 
lays behind the labelling closure generated by 
the initial labelling of the terminal nodes.  
A necessary condition for a particular sentence 
to belong to some non-contracting grammar was 
shown. Some properties related to new concepts 
were described. 

Further research on the grammar and 
derivation nets might be conducted to improve 
their “selectiveness”, i.e. to show a more 
restricting necessary condition. Such a condition 
should reject more incorrect sentences than the 
algorithm presented here. One of the possible 
ways to improve the algorithm would be to 
discover potential derivations, based on how 
successive labels have been obtained, and check 
their correctness. 
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O problemie przynależności zdań do języków kontekstowych 

 
P.A. RYSZAWA 

 
W artykule wprowadzony został nowy rodzaj grafu – graf gramatyczny. Możliwość przypisywania etykiet do 
węzłów daje rozszerzenie do tzw. sieci gramatycznej. Sieć gramatyczną należy traktować jako nowe narzędzie 
graficzne w analizie przynależności zdań do danego języka kontekstowego. Inna koncepcja, sieć wywodu, ściśle 
związana z grafem gramatycznym i o podobnej strukturze, została wykorzystana do pokazania algorytmu, który 
potrafi wstępnie wyselekcjonować niektóre zdania nienależące do danego języka generowanego przez gramatykę 
kontekstową, pozostawiając inne jako potencjalnie w nim zawarte. 
 
Słowa kluczowe: gramatyka kontekstowa, gramatyka nieskracająca, język formalny, graf, rozbiór zdań. 
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