Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We deal with a functional equation of the form f(x + y) = F(f(x),f(y)) (the so called addition formula) assuming that the given binary operation F is associative but its domain of definition is not necessarily connected. In the present paper we shall restrict our consideration to the case when [formula]. These considerations may be viewed as counter parts of Losonczi's [7] and Domańska's [3] results on local solutions of the functional equation f(F(x, y)) = f(x) + f(y) with the same behaviour of the given associative operation F. In this paper we admit fairly general structure in the domain of the unknown function.
Słowa kluczowe
Rocznik
Tom
Strony
25--30
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Institute of Mathematics and Computer Science, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42 - 201 Częstochowa, Poland
Bibliografia
- [1] J. Aczél. Lectures on Functional Equations and Their Applications. Academic Press, New York, 1966.
- [2] A. Chéritat. Fractions rationnelles associatives et corps quadratiques, Rev. Math. de l'Enseignement Supérieur, 109, 1025-1040, 1998-1999.
- [3] K. Domańska. Cauchytype equations related to some singular associative operations. Glasnik Matematički, 31(51), 135-149, 1996.
- [4] K. Domańska, R. Ger. Addition formulae with singularities. Ann. Math. Silesianae, 18, 7-20, 2004.
- [5] R. Ger. On some functional equations with a restricted domain, II. Fund. Math., 98, 249-272, 1978.
- [6] R. Ger. O pewnych równaniach funkcyjnych z obciętą dziedziną. Prace Naukowe Uniwersytetu Śląskiego, Nr 132, Katowice, 1976.
- [7] L. Losonczi. Local solutions of functional equations, Glasnik Matematički, 25(45), 57-67, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8405973-e398-47c6-a5db-d1003b1795ff