

This work has been compiled from the paper presented during the 12th International Armament Conference on Scientific

Aspects of Armament & Safety Technology, Jachranka, Poland, September 17-20, 2018.

Fire Control System Software for Remote Controlled

Weapon Stations: History, State of the Art

and Opportunities for Future Development

Rafał KRUSZYNA

Zakłady Mechaniczne Tarnów S.A.

30 Kochanowskiego Str., 33-100 Tarnów, Poland

Author’s e-mail address and ORCID:

rafal.kruszyna@gmail.com; https://orcid.org/0000-0003-2110-7758

Received by the editorial staff on 13 July 2018

The reviewed and verified version was received on 08 June 2020

DOI 10.5604/01.3001.0014.1996

Abstract. This paper presents the evolution of fire control system software for

Remote Controlled Weapon Stations (ZSMU in Polish) developed and manufactured by

Zakłady Mechaniczne “Tarnów” S.A. (Poland). The paper describes the architecture,

scope and purpose of research and development of the fire control system software, and

the prospective directions of its future development. A complement to the paper is

a specification of the optimisation methods used during the development of the fire

control system software and the work organisation of a team of programmers working

on the source code of the fire control system software. The paper illustrates how the

consistent execution of research and development improves the effectiveness,

scalability, and optimisation of the ZSMU fire control system software.

Keywords: software engineering, fire control system, software

PROBLEMS OF MECHATRONICS
ARMAMENT, AVIATION, SAFETY ENGINEERING

PROBLEMY MECHATRONIKI
UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA

ISSN 2081-5891 11, 2 (40), 2020, 95-110

R. Kruszyna 96

1. INTRODUCTION

Zakłady Mechaniczne “Tarnów” S.A. (ZMT S.A., Poland) has been

manufacturing Remote Controlled Weapon Stations (ZSMU in Polish) for many

years. The first ZSMUs were designed at ZMT S.A. in cooperation with third-

party contractors. The design engineering team at ZMT S.A. was tasked with the

mechanical design and weapons engineering; the third-party contractors designed

the electronic solution and software. As ZMT S.A. grew, it generated capital

expenditure to develop its R&D business, the effect of which was the expansion

of the Electronic Design Engineering business and the establishment of a new

software development unit. In 2014, ZMT S.A. launched a project to develop

a remote controlled weapon station, version code ZSMU-1276 A4. A feature of

the ZSMU A4 module was that its electronic solutions and software are

completely proprietary designs of the ZMT S.A. Design Engineering team. ZMT

S.A. acquired new competencies and project experience. This paper describes

and discusses the development process of the main software solution for the

control PC of a whole family of ZSMUs between the years 2014 and 2018.

2. FOREDESIGN

Certain assumptions had to be defined to enable the development

of the ZSMU system software. The assumptions determined the final

architecture and other features of the system. The desired features of the final

system software were:
 Full operation of the capabilities of the hardware the system would be

implemented in;
 Low development costs;
 Operating stability and freedom from errors;
 Short development time;
 Maximum responsiveness;
 Flexible expandability.
The portability of the system was to be maximised to enable easy

implementation in newer products of the same class. All those features would

ensure that the system software needed not to be written from scratch for

every new ZSMU designed with functionalities like its predecessors.

It was not possible to satisfy all these conditions; they contradicted each other

more than once.
For example, there was a rudimentary decision to be made to choose

the programming language in which to write the system. Let us assume that

the programming languages to choose from included an assembler, C, C++,

and Java. Each of these programming languages meets diverse requirements

regarding the system.

Fire Control System Software for Remote Controlled Weapon Stations: History… 97

The assembler allows writing applications which use specific processor

commands to achieve the maximum performance possible. The assembler is

useless in terms of code portability, flexibility, code transparency, and the

logical architecture of the application to be written with it. C is a hardware-

independent programming language. The code written in C performs worse than

the code from an assembler; however, the performance is relatively high

because of the nature of C, which was designed as a programming language for

the execution of low-level operations [1]. C is encumbered with many

drawbacks: it has only one namespace, which restricts scalability to a certain

degree, and no automatic memory management is provided, which can easily

result in memory management errors. In terms of the logic of an application’s

architecture, the lack of any object-oriented programming imposes a serious

constraint — especially in large projects which require a high degree of code

transparency. C++ is yet another programming language to evaluate. In terms of

performance, C++ code is compiled to native instructions set, providing a high-

performance final application [2].

By applying appropriate techniques, the finished application performance

can be like that of applications developed in C. A potential drawback is that

the programming language has no automatic memory management. This forces

programmers to write applications specifically with memory management in

mind; under specific circumstances, it might result in many errors and operating

instability. An undisputed advantage is that C++ is an object-oriented

programming language. It significantly improves the transparency of code and

system architecture in complex applications.

The namespaces also help develop projects with high scalability. A rather

extensive standard library (and the availability of many other libraries)

is another advantage of C++. Java is also a programming language

of consideration. It is an extremely popular language and provides programmers

with multiple convenience features. Java was specifically built to make

programming easier. A programmer writing in Java focuses on the problem

to be solved and not the complexity of the programming language. Java is

cross-platform, features automatic memory management and fully supports

OOL. While it seems to be the perfect solution, these convenient features come

with their own price tag. Java requires a virtual machine to run, which is

a considerable processing overhead; the computing load is further increased by

the memory management automation features. Despite its advantages, Java

is ultimately much worse in performance than C or C++. The poor performance

alone disqualifies Java from real-time control applications.

R. Kruszyna 98

3. APPLIED TECHNOLOGIES

Having analysed the specification requirements for the final system, the

level of system complexity and a few other applicable parameters, preliminary

project decisions were made to define the IT technologies which should be

applied. The project management decided that the fire control system (FCS)

software would be written in C++ with a Qt library support. The hardware

platform chosen for the project was an x86 military-grade PC managed by

a Linux kernel-based operating system.

4. ARCHITECTURE

4.1. Hardware architecture

To facilitate the understanding of the architecture of the FSC software

developed for the ZSMUs manufactured by ZMT S.A., a pictorial diagram is

provided below.

Fig. 1. ZSMU A4 turret system

Fire Control System Software for Remote Controlled Weapon Stations: History… 99

Figure 1 illustrates an overview of the hardware structure for the ZSMU.

Depending on the mission specifications, the hardware structure can

be expanded with more operating stations or connectivity with external systems.

Depending on their models, the ZSMU manufactured at ZMT S.A. vary in

hardware structure, although they feature many common components. Each

ZSMU has a power supply unit (controller), a display of the video feed

transmitted from the electronic optical cluster and operation of function keys, an

operating console as an input interface of the FCS settings, a joystick, a control

PC, drive controllers, a weapons controller, and the electronic optical cluster.

Figure 2 illustrates a detailed block diagram of the most extensive ZSMU

version, the ZSMU A5.

Fig. 2. Block diagram of the ZSMU A5

Colour brown designates the control computers. Green designates

the physical hardware which the computers communicate with and control.

The peripheral varies with the ZSMU turret version. Example: the ZSMU turret

versions – A4, A3, A5, and A3B – have different operating consoles, joysticks,

weapons controllers, electronic optical clusters, and hubs.

R. Kruszyna 100

4.2. System architecture

One of the greatest challenges in the development of the ZSMU FCS

software was to build a suitable system architecture. Two strategies of system

architecture development were considered. The easy one consisted in writing

a separate software solution for each tower version. The approach was

straightforward, a code would be written for each ZSMU model so that its FCS

software would just cover the hardware functionalities. A good solution in

the short term, it would cause many problems in the long-term evolution

of the product versions. The first of the main drawbacks was that writing

a separate FCS software solution for each ZSMU version would be much more

labour-intensive in the long term than developing a unified and universal

platform. Between 2014 and 2018, ZMT S.A. developed four new ZSMUs;

developing the FCS software for each of the four versions would require more

time and resources than a single, universal FCS software solution. The second

undisputed advantage of developing single, universal FCS software solution

was that its debugging, optimisation, and patching would be automatically

applied to all supported ZSMUs. It was the only reasonable choice to develop

a unified universal FCS software platform.
Another considerable challenge for the FCS software development was

the variety of hardware in the ZSMUs. Each ZSMU varies in the applied

mechanical and electronic solutions. A question has arisen: how to unify this

variety to achieve the maximum possible performance with a code transparent

enough to enable easy analysis and future evolution of the FCS software?

An example of the problems at this stage was that certain ZSMU versions (A3

and A3B) featured one control PC each, while other ZSMU versions (A4 and

A5) had two control PCs each: one at the operating station and the other in

the ZSMU artillery tower assembly. The challenge in support between one

and two control PCs was solved by dividing the FCS software into two main

processes. One process manages the graphical user interface and operating

controls. The other process manages drives, controllers, stabilisation,

and ballistics. The twin-process division of the FCS software solved

the conflicts between the single and twin control PC systems. A single control

PC military turret has both processes launched on the same PC unit. The

processes exchange data over IPC. A twin control PC military turret has the

GUI launched on one of the control PCs. The drive control process is launched

on the other control PC. Both processes exchange data over a physical link.

From the system architecture perspective, there is no difference between

the single and the twin control PC configuration. A simplified UML diagram

of the architecture of both processes is shown in the two following diagrams.

Fire Control System Software for Remote Controlled Weapon Stations: History… 101

Fig. 3. Overview of the GUI process architecture

Figures 3 and 4 provide simplified illustrations of the concept behind the

FCS software architecture for the ZSMU military turrets designed by ZMT S.A.

The actual arrangement of the classes is much more complex. The diagrams

merely illustrate the idea behind the applied solution. The diagrams show the

solution to the hardware diversity between the specific configurations of

ZSMUs.

R. Kruszyna 102

Fig. 4. Overview of the drive control process architecture

The problem was solved by strict cooperation with the electronic

engineering team. The electronic solution design required the hardware units

of the ZSMU military turret to be autonomous and independent from one

another. This electronic solution design provided the PSUs, operating consoles,

displays, joysticks, weapons controllers, videotrackers and other hardware units

fully autonomous, and the operation of every hardware unit was not correlated

to other hardware units in any way. The only correlation between any two

hardware units is software-driven with an unlimited degree of flexibility.

The hardware support is a set of independent and separate classes. For each

hardware unit in the FCS, a code portion was written forming a hardware driver

independent from other hardware drivers. The Figures 5 and 6 in the UML

notation present two examples of the classes; one supports a drive controller,

and the other supports the joystick.

Fire Control System Software for Remote Controlled Weapon Stations: History… 103

Fig. 5. Drive controller

Fig. 6. Joystick controller

The modular design of the drivers makes the FCS a very flexible solution

which permits a relatively quick implementation of new functionalities and fast

porting of the FCS to new products. A major aspect consists in the separation

of the control logic between the individual models of the ZSMU remote

controlled weapon stations. The idea is clearly illustrated in Figures 3 and 4.

R. Kruszyna 104

Every new ZSMU model receives dedicated classes which handle the logic

mapping between the hardware units of the ZSMU. As a result, changes in the

logic of the operation of an ZSMU do not result in changes in another ZSMU;

this provides full flexibility of functional configuration for each ZSMU military

turret version. The implementation of a new ZSMU is also a relatively easy

task. This action requires writing its logical classes. This is followed by using

the already written drivers applied in the existing ZSMUs — which are

compatible with the new ZSMU – and mapping the drivers to the logical

classes. If a driver is missing (due to non-compatibility with the existing ZSMU

models), it must be written. The solution saves considerable time and

maximises the re-use of existing software.

5. OPTIMISATION

5.1. Optimisation of system functionalities

System performance was one of the priorities in the development

of the ZSMU FCS software. Performance, responsiveness, and maximum

reduction of the main loop processing time became the primary criteria for

the applied optimisation. The optimisation largely concerned the building

of the application binary version and the applied libraries. In terms

of the libraries, the FCS application was originally integrated with the operating

system as shown in Fig. 7.

Fig. 7. FCS application and libraries

The first completely proprietary ZSMU design of ZMT S.A. was the

ZSMU A4. Its FCS application ran on a Qt library which facilitated the

programming of graphical interface features, serial ports, time dependencies,

network support, and other features.

Fire Control System Software for Remote Controlled Weapon Stations: History… 105

However, this solution failed the test of time. The Qt library is cross-

platform. To work in different operating systems and on different hardware

architectures, the Qt library must form a certain layer of software abstraction.

The processing overheads imposed by cross-platform support, double buffering,

and the graphical performance in the QPainter class caused many problems.

Another issue was the lack of any control over the main application loop: it was

embedded in the library core. All the above caused significant variations of the

calculation performance time and an unsatisfactory CPU usage level.

The problem is pronounced in applications which require real-time control.

The solution was a gradual phasing out of the Qt library in favour of Linux

kernel system calls [3]. Currently, the Qt library is only applied for graphics

rendering. A dedicated library which handles Linux kernel system calls was

developed to handle time, serial ports, network, and frame grabber image

capturing. The complexity of the kernel, the small number of examples and

inferior or missing documentation posed a challenge for library developers.

However, the development outcomes were very good. The direct application of

system calls, while omitting all libraries, provided very good time relationships

and a markedly reduced CPU usage. Currently, the application communicates

with the operating system according to the flow chart shown in Fig. 8.

Fig. 8. FCS application and libraries

Figures 9 and 10 show the results of stability testing of data transmission

speed over the serial ports and the time of the application response with the

output frame to the input frame.

R. Kruszyna 106

Figure 9 shows the performance result of the test application which

transmitted data to a serial port in steady 10 ms intervals and used Linux kernel

system calls only to handle the time and the serial port. The run did not suffer

from any noticeable time fluctuations. Figure 10 shows the result of the test of

the application response to the transmitted data.

Fig. 9. Clock speed test

Fig. 10. Response time

The results were highly repeatable and stable, oscillating near 860 μs.

Such good relationships were largely due to the Linux system kernel and

the solutions it was provided with. While the Linux system kernel is not a real-

time kernel by design, many of its aspects meet the requirements defined for

a soft real-time system [4].

Fire Control System Software for Remote Controlled Weapon Stations: History… 107

There are plans to completely eliminate the Qt library. Only the QPainter

module is still used to handle the GUI rendering; however, it will ultimately

be replaced by an OpenGL or Vulkan – with EGL to generate the rendering

context (a software interface to link the application and the graphics card).

The planned solutions are superior in that the planned libraries support

hardware acceleration of graphics cards and will reduce the CPU load.

The X server and the window manager will also be eliminated to reduce the

FCS boot time. Currently, suitable libraries and technology demos are in

development. The first tests are completed with promising results. Figure 11

shows the final layout of the system application.

Fig. 11. Final layout of the application in the operating system

5.2. Optimisation of the compilation process

The optimisation included the process of building the final application

and operating system. For example, the execution time of the drive control

process main loop (ballistics and stabilisation calculations, controllers, etc.)

with the default IDE settings was approximately 260 μs. Following the input

of compiler settings -O3 and -march=core2, the main loop execution time was

reduced by approximately 40 μs, which meant that the data processing speed

was 25 kHz. The parameter -O3 enabled the highest degree of source code

optimisation. The parameter -march=core2 made the generated binary version

of the application fit closely to the CPU it is run on (a Core2Duo chip) and use

special instructions of the CPU.

A compilation of the system kernel, system drivers and the standard C and

C++ library is planned with the parameters -O3 and -march=core2.

R. Kruszyna 108

6. TEAMWORK

The development team included 3 to 7 programmers, depending on the

product project. The main system was written by two programmers, with one of

them tasked with the GUI process and the other one tasked with the drive

control process. The stabilisation and ballistics algorithms were also developed

by a team of two programmers, one tasked with the algorithms and the other

one tasked with the implementation. Two programmers developed the electronic

system’s software. The whole development process was managed with Git

version control.

7. CONCLUSIONS

The ZSMU-1276 A4 remote controlled weapon stations developed in 2014

took ZMT S.A. to a new area of competence. In a period of four years, new

software was developed and became a complex management system of all

ZSMUs manufactured by ZMT S.A. since 2014. The system is a high-

performance, flexible, and stable software solution. It uses the best design

practices currently applied in software engineering and fully utilizes the

capabilities of the latest Linux operating system. Every component of the

system uses hardware acceleration where possible, which optimises hardware

resources. The correct performance of the system proves that ZMT S.A.

followed an optimum direction to create its proprietary software for the ZSMUs.

FUNDING

The paper contains the results of the research work financed solely by

Zakłady Mechaniczne “Tarnów” S.A.

REFERENCES

[1] https://pl.m.wikipedia.org/wiki/C_(język_programowania) (2018)

[2] Prata Stephen. 2012. Język C++. Szkoła programowania. Gliwice:

Wydawnictwo Helion.
[3] Love Robert. 2014. Linux. Programowanie systemowe. Gliwice:

Wydawnictwo Helion.
[4] Love Robert. 2014. Linuksa. Przewodnik programisty. Gliwice:

Wydawnictwo Helion.

Fire Control System Software for Remote Controlled Weapon Stations: History… 109

Oprogramowanie systemu kierowania ogniem zdalnie

sterowanych modułów uzbrojenia – historia, teraźniejszość

oraz perspektywy rozwoju

Rafał KRUSZYNA

Zakłady Mechaniczne Tarnów S.A.

ul. Kochanowskiego 30, 33-100 Tarnów

Streszczenie. W publikacji przedstawiono ewolucję oprogramowania systemu

kierowania ogniem zdalnie sterowanych modułów uzbrojenia ZSMU, opracowanych

i produkowanych w Zakładach Mechanicznych „Tarnów”. Opisano architekturę, zakres

i cel przeprowadzanych prac badawczo-rozwojowych oraz dalsze potencjalne kierunki

rozwoju. Jako uzupełnienie, podano metody optymalizacji zastosowane przy rozwoju

oprogramowania oraz organizację pracy dla wieloosobowego zespołu programistów,

pracującego nad kodem źródłowym. Publikacja obrazuje, w jaki sposób konsekwentne

prowadzenie prac badawczo-rozwojowych prowadzi do zwiększenia efektywności,

skalowalności i optymalizacji oprogramowania systemu kierowania ogniem dla zdalnie

sterowanych modułów uzbrojenia.
Słowa kluczowe: inżynieria oprogramowania, system kierowania ogniem,

oprogramowanie

