PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ensemble of classifiers based on deep learning for medical image recognition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents special forms of an ensemble of classifiers for analysis of medical images based on application of deep learning. The study analyzes different structures of convolutional neural networks applied in the recognition of two types of medical images: dermoscopic images for melanoma and mammograms for breast cancer. Two approaches to ensemble creation are proposed. In the first approach, the images are processed by a convolutional neural network and the flattened vector of image descriptors is subjected to feature selection by applying different selection methods. As a result, different sets of a limited number of diagnostic features are generated. In the next stage, these sets of features represent input attributes for the classical classifiers: support vector machine, a random forest of decision trees, and softmax. By combining different selection methods with these classifiers an ensemble classification system is created and integrated by majority voting. In the second approach, different structures of convolutional neural networks are directly applied as the members of the ensemble. The efficiency of the proposed classification systems is investigated and compared to medical data representing dermoscopic images of melanoma and breast cancer mammogram images. Thanks to fusion of the results of many classifiers forming an ensemble, accuracy and all other quality measures have been significantly increased for both types of medical images.
Rocznik
Strony
139--156
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Military University of Technology, Faculty of Electronics, Institute of Electronic Systems, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Electronics, Institute of Electronic Systems, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Electrical Engineering, pl. Politechniki 1, 00-661 Warsaw, Poland
  • University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warsaw
  • Central Clinical Hospital Ministry of Defense, Military Institute of Medicine - National Research Institute, ul. Szaserów 128, 04-141 Warsaw
Bibliografia
  • [1] Kuncheva, L. (2014). Combining Pattern Classifiers. Wiley.
  • [2] Bonab, H., & Can, F. (2019). Less is more: a comprehensive framework for the number of components of ensemble classifiers. IEEE Transactions on Neural Networks and Learning Systems, 30(9), 2735-2745. https://doi.org/10.48550/arXiv.1709.02925
  • [3] Kruk, M., Świderski, B., Osowski, S., Kurek, J., Słowińska, M., & Walecka, I. (2015). Melanoma recognition using extended set of descriptors and classifiers. EURASIP journal on Image and Video Processing, 2015(1), 1-10. https://doi.org/10.1186/s13640-015-0099-9
  • [4] Brownlee J. (2020). Master Machine Learning Algorithms. Machine Learning Mastery.
  • [5] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • [6] Grochowski, M., Wąsowicz, M., Mikołajczyk, A., Ficek, M., Kulka, M., Wróbel, M. S., & Jędrzejewska-Szczerska, M. (2019). Machine learning system for automated blood smear analysis. Metrology and Measurement Systems, 26(1)., 81-93. https://doi.org/10.24425/mms.2019.126323
  • [7] Grochowski, M., Mikołajczyk, A., & Kwasigroch, A. (2019). Diagnosis of malignant melanoma by neural network ensemble-based system utilising hand-crafted skin lesion features. Metrology and Measurement Systems, 26(1), 65-80. https://doi.org/10.24425/mms.2019.126327
  • [8] Barata, C., Ruela, M., Francisco, M., Mendonça, T., & Marques, J. S. (2013). Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Systems Journal, 8(3), 965-979. https://doi.org/10.1109/JSYST.2013.2271540
  • [9] Stańczyk, U., Zielosko, B., & Jain, L. C. (Eds.). (2018). Advances in feature selection for data and pattern recognition. Springer International Publishing. https://doi.org/10.1007/978-3-319-67588-6
  • [10] Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., & Munishkumaran, S. (1998). Current status of the digital database for screening mammography. In Digital mammography (pp. 457-460). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5318-8_75
  • [11] Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53(3), 551-577. https://doi.org/10.1007/s10115-017-1059-8
  • [12] Abbas, Q., Emre Celebi, M., Garcia, I. F., & Ahmad, W. (2013). Melanoma recognition framework based on expert definition of ABCD for dermoscopic images. Skin Research and Technology, 19(1), e93-e102. https://doi.org/10.1111/j.1600-0846.2012.00614.x
  • [13] Aziz, R., Verma, C. K., & Srivastava, N. (2017). Dimension reduction methods for microarray data: a review. AIMS Bioengineering, 4(2), 179-197. https://doi.org/10.3934/bioeng.2017.1.179
  • [14] Popescu, D., El-Khatib, M., & Ichim, L. (2022). Skin Lesion Classification Using Collective Intelligence of Multiple Neural Networks. Sensors, 22(12), 4399. https://doi.org/10.3390/s22124399
  • [15] Scholkopf, B., & Smola, A. J. (2018). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
  • [16] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  • [17] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
  • [18] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence. https://doi.org/10.48550/arXiv.1602.07261
  • [19] Tan, M., & Le, Q. (2019, May). EfficientNet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR. https://doi.org/10.48550/arXiv.1905.11946
  • [20] MathWorks. (2021). Matlab user manual.
  • [21] Tan, P. N., Steinbach, M. & Kumar, V. (2013). Introduction to Data Mining, Pearson Education Inc.
  • [22] Sabouri, P., GholamHosseini, H., Larsson, T., & Collins, J. (2014, August). A cascade classifier for diagnosis of melanoma in clinical images. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6748-6751). IEEE. https://doi.org/10.1109/embc.2014.6945177
  • [23] Aljohani, K., & Turki, T. (2022). Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks. AI, 3(2), 512-525. https://doi.org/10.3390/ai3020029
  • [24] Winkler, J. K., Sies, K., Fink, C., Toberer, F., Enk, A., Deinlein, T., ... & Haenssle, H. A. (2020). Melanoma recognition by a deep learning convolutional neural network - performance in different melanoma subtypes and localisations. European Journal of Cancer, 127, 21-29. https://doi.org/10.1016/j.ejca.2019.11.020
  • [25] Jiao, Z., Gao, X., Wang, Y., & Li, J. (2018). A parasitic metric learning net for breast mass classification based on mammography. Pattern Recognition, 75, 292-301. https://doi.org/10.1016/j.patcog.2017.07.008
  • [26] Yi, D., Sawyer, R. L., Cohn III, D., Dunnmon, J., Lam, C., Xiao, X., & Rubin, D. (2017). Optimizing and visualizing deep learning for benign/malignant classification in breast tumors. In 29th Conference on Neural Information Processing Systems (NIPS 2016). https://doi.org/10.48550/arXiv.1705.06362
  • [27] Hang, W., Liu Z. & Hannun, A. (2017). GlimpseNet: attentional methods for full-image mammogram diagnosis. Proceedings Hang 2017 Glimpse Net A.
  • [28] Lotter, W., Sorensen, G., & Cox, D. (2017). A multi-scale CNN and curriculum learning strategy for mammogram classification. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (pp. 169-177). Springer, Cham. https://doi.org/10.48550/arXiv.1707.06978
  • [29] ur Rehman, K., Li, J., Pei, Y., Yasin, A., & Ali, S. (2022, October). A Deep Learning-Based Approach for Mammographic Architectural Distortion Classification. In Innovative Computing: Proceedings of the 5th International Conference on Innovative Computing (IC 2022) (pp. 3-14). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4132-0_1
  • [30] Dhahbi, S., Barhoumi, W., & Zagrouba, E. (2015). Breast cancer diagnosis in digitized mammograms using curvelet moments. Computers in Biology and Medicine, 64(1), 79-90. https://doi.org/10.1016/j.compbiomed.2015.06.012
  • [31] Swiderski, B., Osowski, S., Kurek, J., Kruk, M., Lugowska, I., Rutkowski, P., & Barhoumi, W. (2017). Novel methods of image description and ensemble of classifiers in application to mammogram analysis. Expert Systems with Applications, 81, 67-78. https://doi.org/10.1016/j.eswa.2017.03.031
  • [32] Gil, F., Osowski, S., & Slowinska, M. (2022, September). Melanoma recognition using deep learning and ensemble of classifiers. In 2022 23rd International Conference on Computational Problems of Electrical Engineering (CPEE) (pp. 1-4). IEEE. https://doi.org/10.1109/CPEE56060.2022.9919681
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c83d578b-2516-4f47-a686-65bc416b822e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.