PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the excessive Pb-210 content in soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie zawartości nadmiarowego Pb-210 w glebie
Języki publikacji
EN
Abstrakty
EN
The aim of the study was the analysis of soil contamination in the area in vicinity of metalworking plants located in the district Opole-Metalchem (PL). Pb-210 was used as pollution indicator because its increased concentration of activity may indicate the presence of other contaminants in the studied area. On the base of the obtained results, the activity concentration of the excessive lead was calculated. Its biggest value was observed in soil in a forest area. In areas with increased excessive lead content also elevated values of Cs-137 activity concentrations were recorded. Atmospheric source of Pbex and Cs-137 deposition was supposed.
PL
Celem badań była analiza zanieczyszczenia gleby w rejonie zakładów metalurgicznych w dzielnicy Opole-Metalchem. Jako wskaźnika użyto Pb-210, ponieważ podwyższona jego aktywność może wskazywać na obecność innych zanieczyszczeń na badanym terenie. Na podstawie uzyskanych wyników obliczono aktywność ołowiu nadmiarowego. Największe jego aktywności zaobserwowano w glebie na terenie leśnym. W miejscach z podwyższoną aktywnością ołowiu nadmiarowego odnotowano także wyższe wartości aktywności Cs-137.
Rocznik
Strony
1317--1325
Opis fizyczny
Bibliogr. 27 poz., tab., wykr., rys.
Twórcy
autor
  • Independent Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45–032 Opole, Poland, phone: +48 77 401 60 46
  • Independent Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45–032 Opole, Poland, phone: +48 77 401 60 46
  • Independent Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45–032 Opole, Poland, phone: +48 77 401 60 46
autor
  • Independent Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45–032 Opole, Poland, phone: +48 77 401 60 46
  • Independent Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45–032 Opole, Poland, phone: +48 77 401 60 46
Bibliografia
  • [1] Habashi F. A review. Pollution problems of the metallurgical industry. RIIGEO. 2003;15(29):49-60.
  • [2] Paladyna J, Krasnodebska-Ostrega B, Kregielewska K, Kowalska J, Jedynak L, Golimowski J, Grobelski T, et al. The assessment of environmental pollution caused by mining and metallurgy wastes from highly polluted post-industrial regions in Southern Poland. Environ Earth Sci. 2013;68:439-450. DOI: 10.1007/s12665-012-1750-8.
  • [3] Metallurgical industries. www.inece.org (accessed 11.01.2014).
  • [4] Balkhyour MA, Goknil MK. Total fume and metal concentrations during welding in selected factoried in Jeddah, Saudi Arabia. Int J Environ Res Public Heath. 2010;7:2978-2987. DOI: 10.3390/ijerph7072978.
  • [5] Dartey E, Adimado AA, Agyarko K. Evaluation of airborne lead levels in storage battery workshops and some welding environments in Kumasi metropolis in Ghana. Environ Monit Assess. 2010;164:1-8. DOI: 10.1007/s10661-009-0869-x.
  • [6] Yang Y, Li S, Bi X, Wu P, Liu T, Li F, Liu C. Lead, Zn and Cd in slags, stream sediments and soils in an abandoned Zn smelting region , southwest of China, and Pb and S isotopes as source tracers. J Soils Sediments. 2010;10:1527-1539. DOI: 10.1007/s11368-010-0253-z.
  • [7] Safari Sinegani AA, Araki HM. Changes in chemical forms of lead in temperate and semiarid soils in sterile and unsterile conditions. Environ Chem Lett. 2010;8:323-330. DOI: 10.1007 /s10311-009-0227-9.
  • [8] Demetriades A, Li X, Ramsey MH, Thornton I. Chemical speciation and bioaccessibility of lead in surface soil and house dust, Lavrion urban area, Attiki, Hellas. Environ Geochem Heath. 2010;32:529-552. DOI: 10.1007/s10653-010-9315-9.
  • [9] Clark JS, Patterson WA. Pollen, Pb-210, and opaque spherules; an integrated approach to dating and sedimentation in the itertidal environment. J Sed Res. 1984;54(4):1251-1265. DOI: 10.1306/212F85B2-2B24-11D7-8648000102C1865D.
  • [10] Ellingsen DG, Zibarev E, Kusraeva Z, Berlinger B, Chashchin M, Bast-Pettersen R, Chashchin V, Thomassen Y. The bioavailability of manganese in welders in relation to its solubility in welding Fusem. Environ Sci: Processes Impacts. 2013;15:357-365. DOI: 10.1039/c2em30750b.
  • [11] Ellingsen DG, Dubeikovskaya L, Dahl K, Chashchin M, Cashchin V, Zibarev E, Thomassen Y. Air exposure assessment and biological monitoring of manganese and Rother majors welding fume components in welders. J Environ Monit. 2006;8:1078-1086. DOI: 10.1039/B605549D.
  • [12] Kuo CH, Wang KC, Tian TF, Tsai MH, Chiung YM, Siech CM, Tsai SJ, et al. Metabolomic characterization of laborers exposed to welding fumes. Chem Res Toxicol. 2012;25:676-686. DOI: 10.1021/tx200465e.
  • [13] Herranz M, Roza S, Pérez C, Idśta R, Núńez-Lagos R, Legarda F. Effective dose in the manufacturing process of rutile covered welding electrodes. J Radiol Prot. 2013;33:213. DOI: 10.1088/0952-4746/33/1/213.
  • [14] Murphy AB. The effects of metal vapour in arc welding. J Phys D: Appl Phys. 2010;43:434001. DOI: 10.1088/0022-3727/43/43/434001.
  • [15] Hoffmeyer F, Ralf-Heimsoth M, Weiss T, Lehnert M, Gawrych K, Kendzia B, Harth V, et al. Relation between biomarkers in exhaled breath condensate and internal exposure to metals from gas metal arc welding. J Breath Res. 2012;6:1-8. DOI: 10.1088/1752-7155/6/2/027105.
  • [16] Antonini JM. Health effects of welding. Crit Rev Toxicol. 2003;33(1):61-103.
  • [17] Zielińska M, Rajfur M, Kozłowski R, Kłos A. Active biomonitoring of the Odra river using Palmaria palmata algae. Proc of ECOpole. 2013;7(2):754-763. DOI: 10.2429/proc.2013.7(2)099.
  • [18] Bem EM, Bem H, Wieczorkowski P. Studies of radionuclide concentrations in surface soils in and around fly ash disposal sites. Sci Total Environ. 1998;220:215-222.
  • [19] UNSCEAR 1977 Report. Sources And Effects Of Ionizing Radiation. Annex C: Radioactive contamination due to nuclear explosions.
  • [20] Izrael YA. Radioactive fallout after nuclear explosions and accidents. Vol 3. Radioactivity in the environment. Amsterdam: Elsevier; 2002.
  • [21] UNSCEAR 1988 REPORT. Sources, Effects And Risks Of Ionizing Radiation. Annex D: Exposures from the Chernobyl accident.
  • [22] Korobova EM, Romanov SL. A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical fields and modeling of the geochemical field structure. Chemometr Intell Lab. 2009;99(1):1-8. DOI: 10.1016/j.chemolab.2009.07.009.
  • [23] Bossew P, Kirchner G, de Cort M, de Vries G, Nishev A, de Felice L. Radioactivity from Fukushima Dai-ichi in air over Europe. Part 1: Spatio-temporal analysis. J Environ Radioactiv. 2012;114:22-34. DOI: 10.1016/j.jenvrad.2011.11.019.
  • [24] Kirchner G, Bossew P, de Cort M. Radioactivity from Fukushima Dai-ichi in air over Europe. Part 2: What can it tell us about the accident? J Environ Radioactiv. 2012;114:35-40. DOI: 10.1016/j.jenvrad.2011.12.016.
  • [25] Yablokov AV, Nesterenko VB, Nesterenko AV. Chernobyl. Ann NY Acad Sci. 2009;1181:221-286. DOI: 10.1111/j.1749-6632.2009.04830.x.
  • [26] Dushenkov S. Trends in phytoremediation of radionuclides. Plant and Soil. 2003;249(1):167-175. DOI: 10.1023/A:1022527207359.
  • [27] Nimis PL. Radiocesium in plants of forest ecosystems. Studia Geobotan. 1996;15:3-49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c838ed25-c486-441d-b60f-893b8bcbc8f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.