PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic response of a simply supported viscoelastic beam of a fractional derivative type to a moving force load

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the dynamic response of a simply supported viscoelastic beam of the fractional derivative type to a moving force load is studied. The Bernoulli-Euler beam with the fractional derivative viscoelastic Kelvin-Voigt material model is considered. The RiemannLiouville fractional derivative of the order 0 < α ¬ 1 is used. The forced-vibration solution of the beam is determined using the mode superposition method. A convolution integral of fractional Green’s function and forcing function is used to achieve the beam response. Green’s function is formulated by two terms. The first term describes damped vibrations around the drifting equilibrium position, while the second term describes the drift of the equilibrium position. The solution is obtained analytically whereas dynamic responses are calculated numerically. A comparison between the results obtained using the fractional and integer viscoelastic material models is performed. Next, the effects of the order of the fractional derivative and velocity of the moving force on the dynamic response of the beam are studied. In the analysed system, the effect of the term describing the drift of the equilibrium position on the beam deflection is negligible in comparison with the first term and therefore can be omitted. The calculated responses of the beam with the fractional material model are similar to those presented in works of other authors.
Rocznik
Strony
1433--1445
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Warszawa, Poland
Bibliografia
  • 1. Abu Hilal M., Zibdeh H.S., 2000, Vibration analysis of beams with general boundary conditions traversed by a moving force, Journal of Sound and Vibration, 229, 2, 377-388
  • 2. Abu-Mallouh R., Abu-Alshaikh I., Zibdeh H.S, Ramadan. K., 2012, Response of fractionally damped beams with general boundary conditions subjected to moving loads, Shock and Vibration, 19, 333-347
  • 3. Alkhaldi H.S., Abu-Alshaikh I.M., Al-Rabadi A.N., 2013, Vibration control of fractionallydamped beam subjected to a moving vehicle and attached to fractionally-damped multi-absorbers, Advances in Mathematical Physics, ID 232160, http://dx.doi.org/10.1155/2013/232160
  • 4. Atanackovic T.M., Stankovic B., 2002, Dynamics of a viscoelastic rod of fractional derivative type, ZAMM, 82, 6, 377-386
  • 5. Bagley R.L., Torvik P.J., 1983a, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27, 3, 201-210
  • 6. Bagley R.L., Torvik P.J., 1983b, Fractional calculus – a different approach to the analysis of viscoelastically damped structures, AIAA Journal, 21, 5, 741-748
  • 7. Bagley R.L., Torvik P.J., 1986, On the fractional calculus model of viscoelastic behavior, Journal of Rheology, 30, 1, 133-155
  • 8. Bajer C.I., Dyniewicz B., 2012, Numerical Analysis of Vibrations of Structures under Moving Inertial Load, Springer, Heidelberg
  • 9. Beyer H., Kempfle S., 1995, Definition of physically consistent damping laws with fractional derivatives ZAMM, 75, 8, 623-635
  • 10. Brown J.W., Churchill R.V., 2003, Complex Variables and Applications, 7th ed., McGraw-Hill, Boston
  • 11. Caputo M., 1974, Vibrations of an infinitive viscoelastic layer with a dissipative memory, Journal of Acoustical Society of America, 56, 3, 897-904
  • 12. Caputo M., Mainardi F., 1971a, A new dissipation model based on memory mechanism, Pure and Applied Geophysics, 91, 8, 134-147
  • 13. Caputo M., Mainardi F., 1971b, Linear models of dissipation in anelastic solids,Rivista del Nuovo Cimento, 1, 2, 161-198
  • 14. Clough R.W., Penzien J., 1993, Dynamics of Structures, MacGraw-Hill, New York
  • 15. Enelund M., Olsson P., 1999, Damping described by fading memory analysis and application to fractional derivative models, International Journal of Solids and Structures, 36, 939-970
  • 16. Fryba L., 1972, Vibration of Solids and Structures under Moving Loads, Noordhoff International Publishing, Groningen, The Netherlands
  • 17. Hedrih (Stevanović) K.R., 2014, Generalized functions of fractional order dissipation of energy system and extended lagrange differential equations in matrix form, Tensor, 75, 1, 35-51
  • 18. Hedrih (Stevanović) K.R., Filipovski A., 2002, Longitudinal creep vibrations of a fractional derivative order rheological rod with variable cross section, Facta Universitatis, Series Mechanics, Automatic Control and Robotics, 3, 12, 327-349
  • 19. Hedrih (Stevanović) K.R., Machado T.J.A., 2015, Discrete fractional order system vibrations, International Journal of Non-Linear Mechanics, 73, 2-11
  • 20. Kaliski S. (Ed.), 1966, Vibrations and Waves in Solids (in Polish), Państwowe Wydawnictwo Naukowe, Warszawa
  • 21. Kempfle S, Schafer I., Beyer H. ¨ , 2002, Fractional calculus via functional calculus: theory and application, Nonlinear Dynamics, 29, 99-127
  • 22. Mainardi F., 2009, Fractional Calculus and Waves in Linear Viscoelastisity: an Introduction to Mathematical Models, Imperial College Press, London
  • 23. Miller K.S., Ross B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey & Sons Inc., New York
  • 24. Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego
  • 25. Rao S., 2004, Mechanical Vibrations, 4-th Ed., Prentice Hall, Upper Saddle River
  • 26. Rossikhin Y.A., Shitikova M.V., 1997, Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems, Acta Mechanica, 120, 109-125
  • 27. Rossikhin Y.A., Shitikova M.V., 2010, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Applied Mechanics Reviews, 63, 1-51
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c838971f-4f27-4b0e-a28c-5c9e900c9c62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.