PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Polish Seminar on Positron Annihilation (42 nd ; 29.06-01.07.2016 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The effect of roller burnishing on Vickers’ hardness and positron lifetimes in the AZ91HP magnesium alloy was studied. The microhardness increases with an increase in the burnishing force and with a decrease in the feed. The comparison of various methods of analysis of positron annihilation lifetime (PAL) spectra allowed identification of two components, which are related to solute-vacancy complexes and vacancy clusters, respectively. It was found that the increase in microhardness was related to the increase in the concentration of vacancy clusters.
Czasopismo
Rocznik
Strony
789--794
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6145, Fax: +48 81 537 6191
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 6145, Fax: +48 81 537 6191
Bibliografia
  • 1. Zhang, P., & Lindema nn, J. (2005). Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80.Scripta Mater., 52(6), 485–490. DOI: 10.1016/j.scriptamat.2004.11.003.
  • 2. Zhang, P., & Lindema nn, J. (2005). Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(10), 1011–1015. DOI: 10.1016/j.scriptamat.2005.01.026.
  • 3. Fouad, Y. (2011). Fa tigue behavior of a rolled AZ31 magnesium alloy after surface treatment by EP and BB conditions. Alexandria Eng. J., 50(1), 23–27. DOI:10.1016/j.aej.2011.01.004.
  • 4. Pu, Z., Yang, S., So ng, G. L., Dillon Jr, O. W., Puleo, D. A., & Jawahir, I. S. (2011). Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scripta Mater., 65(6), 520–523. DOI: 10.1016/j.scriptamat.2011.06.013.
  • 5. Zaleski, R., & Zales ki, K. (2006). Positron annihilation in steel burnished by vibratory shot peening. Acta Phys. Pol. A, 110(5), 739–746.
  • 6. Zaleski, K., & Zales ki, R. (2009). Badania warstwy wierzchniej stopu tytanu technikami wykorzystującymi anihilację pozytonów. Inżynieria Materiałowa, 5,302–305.
  • 7. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI: 10.1016/0168-9002(96)00075-7.
  • 8. Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R., & Aly, E. H. (2008).Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater. Sci. Eng. A, 479(1/2), 37–44. DOI: 10.1016/j.msea.2007.06.016.
  • 9. Djourelov, N., & Misheva, M. (1996). Source correction in positron annihilation lifetime spectroscopy. J. Phys.-Condens. Mat., 8(12), 2081. DOI:10.1088/0953-8984/8/12/020.
  • 10. Čížek, J., Procházka, I., Smola, B., Stulíková, I., & Očenášek, V. (2007). Influence of deformation on precipitation process in Mg-15 wt.%Gd alloy. J. Alloys Compd., 430(1/2), 92–96. DOI: 10.1016/j.jallcom.2006.03.097.
  • 11. Čížek, J., Vlček, M., Smola, B., Stulíková, I., Procházka, I., Kužel, R., Jäger, A., & Lejček, P. (2012).Vacancy-like defects associated with icosahedral phase in Mg-Y-Nd-Zr alloys modified by the addition of Zn. Scripta Mater., 66(9), 630–633. DOI:10.1016/j.scriptamat.2012.01.054.
  • 12. Dryzek, J., & Dryzek, E. (2007). The subsurface zone in magnesium alloy studied by positron annihilation techniques. Tribol. Int., 40(9), 1360–1368. DOI:10.1016/j.triboint.2007.03.004.
  • 13. Ortega, Y., & Rıo, Jd. (2005). Study o f Mg-Ca alloys by positron annihilation technique. Scripta Mater., 52(3), 181–186. DOI: 10.1016/j.scriptamat.2004.09.033.
  • 14. Moia, F., Calloni, A., Ferragut, R., Dupasquier, A., Macchi, C. E., Somoza, A., & Jian Feng Nie (2009). Vacancy-solute interaction in magnesium alloy WE54 during artificial ageing: a positron annihilation spectroscopy study. Int. J. Mater. Res., 100(3), 378–381.DOI: 10.3139/146.110036.
  • 15. Čížek, J., Procházka, I., Smola, B., Stulíková, I., Kužel, R., Matěj, Z., & Cherkaska, V. (2006). Thermal development of microstructure and precipitation effects in Mg-10wt%Gd alloy. Phys. Status Solidi A, 203(3), 466–477. DOI: 10.1002/pssa.200521483.
  • 16. Hautojärvi, P., Johansson, J., Vehanen, A., Yli -Kauppila, J., Hillairet, J., & Tzanétakis, P. (1982). Trapping of positrons at vacancies in magnesium. Appl. Phys. A, 27(1), 49–56. DOI: 10.1007/BF01197546.
  • 17. Checchetto, R., Bazzanella, N., Kale, A., Miotello, A., Mariazzi, S., Brusa, R. S., Mengucci, P., Macchi, C., Somoza, A., Egger, W., & Ravelli, L. (2011). Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering. Phys. Rev. B, 84(5), 054115. DOI: 10.1103/PhysRevB.84.054115.
  • 18. Luna, C. R., Macchi, C., Juan, A., & Somoza, A. ( 2013). Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J. Phys. Conf. Ser., 443(1),012019. DOI: 10.1088/1742-6596/443/1/012019.
  • 19. Brandt, W. (1974). Positron dynamics in solids. A ppl. Phys., 5(1), 1–23. DOI: 10.1007/BF01193389.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c836a554-6488-439f-b4da-927a17446322
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.