PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Solutions for Lubricant Viscosity and Temperature Variations Across the Thin Film on Arbitrary Sliding Bearing Surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowe rozwiązania dla zmian temperatury i lepkości smaru w poprzek cienkiego filmu na dowolnych powierzchniach łożysk ślizgowych
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to analyse the changes in apparent dynamic viscosity and temperature across any thin non-Newtonian lubricating liquid layer, and determine the influence of such variations on the hydrodynamic pressure and load-carrying capacity for arbitrary curvilinear monotone or non-monotone rotational and nonrotational sliding bearing surfaces. This requires determining particular semi-analytical solutions of a strongly non-linear, second-order partial differential system of five equations with variable coefficients in curvilinear coordinates, and imposing proper curvilinear boundary conditions on it. After initial numerical calculations for any bearing surface, especially with a conical or spherical shape, the changes in temperature and viscosity across the thickness of the lubricating film change the load-carrying capacity by nearly 20 per cent compared to the results obtained from classic calculations in the contemporary scientific literature, where the temperature and oil dynamic viscosity are assumed constant across the film thickness.
PL
Celem niniejszej pracy są zmiany lepkości pozornej i temperatury w poprzek cienkiej, ogólnie dowolnej nienewtonowskiej warstewki cieczy smarującej oraz wyznaczenie wpływu tych zmian na ciśnienie hydrodynamiczne i nośność dowolnych obrotowych i nieobrotowych, a także monotonicznych i niemonotonicznych powierzchni łożysk ślizgowych. Powyższy cel narzuca konieczność wyznaczenia semi-analitycznych rozwiązań silnie nieliniowego układu pięciu równań różniczkowych cząstkowych rzędu drugiego o zmiennych współczynnikach w układach krzywoliniowych wraz z nałożeniem na te rozwiązania krzywoliniowych warunków brzegowych. Po obliczeniach dla dowolnych powierzchni łożysk, szczególnie o kształtach stożkowych, sferycznych, parabolicznych, obserwujemy, że zmiany temperatury i lepkości w poprzek grubości cienkiego filmu smarującego powodują istotne, średnio 20-procentowe zmiany nośności łożyska w porównaniu z rezultatami uzyskanymi z obliczeń klasycznych zawartych we współczesnej literaturze naukowej dla stałej wartości temperatury i lepkości dynamicznej przyjętej po grubości filmu.
Czasopismo
Rocznik
Tom
Strony
103--113
Opis fizyczny
Bibliogr.50 poz., rys., wz.
Twórcy
  • WSG Bydgoszcz University, Garbary 2 Str., 85-229 Bydgoszcz, Poland
  • Faculty of Marine Engineering, Morska 81-87 Str., 81-225 Gdynia, Poland
  • 0000-0002-2747-7904
Bibliografia
  • 1. Gertzos K. P., Nikolakopoulos P. G., Papadopoulos C. A.: CFD Analysis of journal bearing lubrication by Bingham lubricant, Tribology International, Vol. 41 Issue 12, 2009, pp. 1190−1204.
  • 2. Abhishek Kumar, Satish C. Sharma: Textured conical hybrid journal bearing with ER lubricant behavior. Tribology International, 129, 2019, pp. 363−376.
  • 3. Ezzat H. A., Rohde S. M.: A Study of Thermodynamic Performance of Finite Slider Bearings. Journal of Tribology, 95, 3, 1973, pp. 298−307.
  • 4. Mittwollen N., Glienicke J.: Operating Conditions of Multi-Lobe Journal Bearing Under High Thermal Loads, Journal of Tribology, 112, 1990, pp. 330−338.
  • 5. Gengyuan Gao, Zhongwei Yin, Dan Jiang, Xiuli Zhang: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribology International, 75, 2014, pp. 31−38.
  • 6. Rao T.V.V.L.N., Rani A.M.A., Nagarajan T., Hashim F.M: Analysis of couple stress fluid lubricated partially textured slip slider and journal bearing using narrow groove theory. Tribology International, 69, 2014, pp. 1−9.
  • 7. Xi Shi, Ting Ni: Effects of groove textured on fully lubricated sliding with cavitation. Tribology International, 144, 2011, pp. 2022−2028.
  • 8. Cupillard S., Glavatskih S., Cervantes M.J.: 3D thermohydrodynamic analysis of a textured slider. Tribology International, Vol. 43 Issue 10, 2009, pp. 1487−1495.
  • 9. Guo L., Wong P.L., Guo F.: Effects of viscosity and sledding speed on boundary slippage in thin film hydrodynamic lubrication. Tribology International, 107, 2017, pp. 85−93.
  • 10. Zouzoulas V., Papadopoulos Ch.I.: 3-D thermo-hydrodynamic analysis of textured, grooved, pocketed and hydrophobic pivoted-pad thrust bearings. Tribology International, 110, 2017, pp. 426−440.
  • 11. Gropper D., Wang L., Harvey T.J.: Hydrodynamic lubrication of textured surfaces: A review of modelling techniques and key findings. Tribology International, 94, 2016, pp. 509−529.
  • 12. Liu H.C., Guo F., Zhang B.B., Wong P.L.: Behavior of hydrodynamic lubrication films under nonsteady state speeds. Tribology International, 93, 2016, pp. 347−354.
  • 13. Hui Zhang,Yang Liu, Meng Hua, Dong-ya Zhang, Li-guo Qin, Guang-neng Dong: An optimization research on the coverage of micro-textures arranged on bearing sliders. Tribology International, 128, 2018, pp. 231−239.
  • 14. Shuhui Cui, Le Gu, Liqin Wang, Bo Xu, Chuanwei Zhang: Numerical analysis on the dynamic contact behavior of hydrodynamic journal bearing during start-up. Tribology International, 121, 2018, pp. 260−268.
  • 15. Bair S.: Generalized Newtonian viscosity functions for hydrodynamic lubrication. Tribology International, 117, 2018, pp. 15−23.
  • 16. Yongfang Zhang, Xianwei Li, Chao Dang, Di Hei, Xia Wang, Yanjun Lu: A semi-analytical approach to nonlinear fluid film forces of a hydrodynamic journal bearing with two axial grooves. Applied Mathematical Modelling, 65, 2019, pp. 318−332.
  • 17. Vijaya J. Kumar, Raghavendra R. Rao: Effects of surface roughness in squeeze film lubrication of spherical bearings. Procedia Engineering, 127, 2015, pp. 955−962.
  • 18. Han T., Paranjpe R.S.: A Finite Volume Analysis of the Thermo-hydrodynamic Performance of Finite Journal Bearings. Journal of Tribology, 112, 1990, pp. 557−565.
  • 19. Hannon W.M., Braun M.J., Hariharan S.I.: Generalized Universal Reynolds Equation for Variable Properties Fluid-Film Lubrication and Variable Geometry Self-Acting Bearings. Tribology Transactions, 47(2), 2004, pp. 171−181.
  • 20. Dowson D.: A generalized Reynolds equation for fluid film lubrication. International Journal of Mechanical Sciences, 4, 1986, pp.159−170.
  • 21. Khonsari M.M., Beaman J.J.: Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings. A.S.L.E. Transactions, 29 (2), 1986, pp. 141−150.
  • 22. Jeng M.C., Zhou G.R., Szeri A.Z.: A Thermo-hydrodynamic Solutions of Pivoted Thrust Pads: Part I-Theory. Journal of Tribology, 108 (4), 1986, pp. 195−207.
  • 23. Khan M., Nadeem S., Hayat T., Siddiqui A.M.: Unsteady Motion of a Generalized Second-Grade Fluid. Mathematical and Computer Modelling, 41, 2005, pp. 629−637.
  • 24. Mehradad Massoudi: Local non-similarity solutions for the flow of a non-Newtonian fluid over-wedge. International Journal of Non-Linear Mechanics, 36, 2001, pp. 961−976.
  • 25. Perlacova T., Prusa V.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids, Journal of non-Newtonian Mechanics, 216, 2016, pp. 13−21.
  • 26. Saramito P.: A new constitutive equations for elasto-visco-plastic fluid flow. Journal Non-Newtonian Fluid Mechanics, 145, 2007, pp. 1−14.
  • 27. Chen J., Lee J.D., Liang Chunlei: Constitutive equations of Micropolar electromagnetic fluids. Journal Non-Newtonian Fluids, 166, 2011, pp. 867−874.
  • 28. Fusi L.: Two dimensional thin film flow of an incompressible fluid in a channel. Journal Non-Newtonian Fluid Mechanics, 260, 2018, pp. 87−100.
  • 29. Huilog R.R., Kefayati G.H.R.: A particle distribution function approach to the equation of continuum mechanics in Cartesian, cylindrical and spherical coordinates Newtonian and non-Newtonian fluids. Journal Non-Newtonian Fluid Mechanics, 251, 2018, pp. 119−131.
  • 30. Miszczak A.: An Analysis of ferro-thermo-hydrodynamic lubrication of slide journal bearings, Sci. Foundation in Gdynia Maritime University, Gdynia 2006 (in Polish).
  • 31. Oluwole Daniel Makinde: On thermal stability of a reactive third-grade fluid in a channel with convective cooling the walls. Applied Mathematics and Computation, 213, 2009, pp. 170–176.
  • 32. Walicki E.: Viscous fluid flow in slots of thrust bearings, ATR Press, Bydgoszcz 1977.
  • 33. Wierzcholski K, Miszczak A.: Electro-magneto-hydrodynamic lubrication. Open Physics, 16, 2018, pp. 1–7.
  • 34. Wierzcholski K, Miszczak A.: Mathematical principles and methods of biological surface lubrication with phospholipids bilayer. BioSystems, 178, 2019, pp. 32–40.
  • 35. Pawlak Z., Urbaniak W., Hagner-Derengowska M.W.: The Probable Explanation for the Low Friction of Natural Joints. Cell Biochemistry and Biophysics 71 (3), 2015, pp. 1615–1621.
  • 36. Pawlak Z., Figaszewski Z.A., Gadomski A., Urbaniak W., Oloyede A.: The ultra–low friction of the articular surface is pH-dependent and is built on a hydrophobic underlay including a hypothesis on joint lubrication mechanism. Tribology International, Vol. 43 Issue 9, 2010, pp. 1719–1725.
  • 37. Pawlak Z., Urbaniak W., Oloyede A.: The relationship between friction and wettability in aqueous environment of natural joints. Wear, 271, 2011, pp. 1745–1749.
  • 38. Pawlak Z., Petelska A.D., Urbaniak W., Fusuf K.Q., Oloyede A.: Relationship Between Wettability and Lubrication Characteristics of the Surfaces of Contacting Phospholipids-Based Membranes. Cell Biochemistry and Biophysics 65 (3), 2012, pp. 335–345.
  • 39. Wierzcholski K.: Topology of calculating pressure and friction coefficients for time-dependent human hip joint lubrication. Acta of Bioengineering and Biomechanics, 13 (1), 2011, pp. 41–56.
  • 40. Wierzcholski K., Miszczak A.: Magneto-Therapy of Human Joints Cartilage, Acta of Bioengineering and Biomechanics, 19 (1), 2017, pp. 115–124.
  • 41. Wierzcholski K.: Comparison Between Impulsive and Periodic Non Newtonian Lubrication of Human Hip Joint. Engineering Transaction, 53, 2005, pp. 69–114.
  • 42. Wierzcholski K.: The method of solutions for hydrodynamic lubrication by synovial fluid flow in human joint gap. Control and Cybernetics, 31, 2002, pp. 91– 116.
  • 43. Wierzcholski K, Miszczak A.: Temperature and adhesion influence on the micro-bearing operating parameters. Solid State Phenomena, 199, 2013, pp. 176–181.
  • 44. Wierzcholski K, Miszczak A.: Load Carrying Capacity of Micro-bearing with Parabolic Journal. Solid State Phenomena, 147-149, 2009, pp. 542–547.
  • 45. Wierzcholski K., Gospodarczyk J.: Non Solved Contemporary Scientific Problems of Non-Conventional Bio-Surfaces Lubrication. Recent Progress in Materials, 5 (1), 2023, pp. 1–25.
  • 46. Mollica F., Rajagopal K.R.: Secondary flows due to axial shearing of a third grade fluid between two eccentrically placed cylinders. International Journal of Engineering Science, 37 (4), 1999, pp. 411–429.
  • 47. Taber L.A.: Nonlinear Theory of Elasticity Applications in Biomechanics, World Scientific Publishing Company, New Jersey, London, Washington 2004.
  • 48. Lee J.M.: Introduction to Riemannian Manifolds, Springer Verlag, London 2018.
  • 49. Ralston A.: A First Course in Numerical Analysis, McGraw Hill Book Company, Toronto 1965.
  • 50. Wierzcholski K.: Applications of Summation and Recurrence Equations, Lambert, Academic Publishing Company, Saarbrücken 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c82b8a85-6e4d-465c-a5d7-6e1f7daeb722
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.