PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of length to beam ratio effects on ship resistance using ranse method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the length to beam (L/B) ratio effects on ship resistance at three different Froude numbers using unsteady RANSE simulation. First, the JBC ship model was used as an initial hull form for verification and validation of predicted ship resistance results with measured data, and then the influence of the L/B ratio on ship resistance was carried out. Ship hull forms with different L/B ratios were produced from the initial one by using the Lackenby method. The numerical results obtained show the L/B ratio’s effect on ship resistance. Increases of the L/B ratio led to gradual reduction of the total ship resistance and vice versa. Analysis of the changing of the resistance components indicates that the pressure resistance changes are considerably larger than the frictional one. Finally, the paper analyses the difference in the flow field around the hull of the ship with variation of the L/B ratio to fully understand the physical phenomenon in the change of ship resistance at different L/B parameters.
Słowa kluczowe
Rocznik
Tom
Strony
13--24
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Ho Chi Minh City University of Technology (HCMUT), Vietnam
  • Vietnam National University Ho Chi Minh City, Vietnam
  • Ho Chi Minh City University of Technology (HCMUT), Vietnam
  • Vietnam National University Ho Chi Minh City, Vietnam
autor
  • Vietnam Maritime University, VietNam
  • Ho Chi Minh City University of Transport, Vietnam
autor
  • Vietnam Maritime University, VietNam
Bibliografia
  • 1. A. Papanikolaou, ‘Ship design: Methodologies of preliminary design’, Springer, 2014. https://doi. org/10.1007/978-94-017-8751-2.
  • 2. O. Kanifolskyi, ‘General Strength, Energy Efficiency (EEDI), and Energy Wave Criterion (EWC) of Deadrise Hulls for Transitional Mode,’ Polish Maritime Research, vol. 29, no. 3, pp. 4-10, 2022. https://doi.org/10.2478/pomr-2022-0021.
  • 3. A. A. Banawan, and Y. M. Ahmed, ‘Use of computational fluid dynamics for the calculation of ship resistance, and its variation with the ship hull form parameters,’ Alexandria Engineering Journal, vol. 45, no. 1, pp. 47-56, 2006.
  • 4. M. Kraskowski, ‘CFD Optimisation of the Longitudinal Volume Distribution of a Ship’s Hull by Constrained Transformation of the Sectional Area Curve,’ Polish Maritime Research, vol. 29, no. 3, pp. 11-20, 2022. https:// doi.org/10.2478/pomr-2022-0022.
  • 5. D. D. Luu et al., ‘Numerical Study on the Influence of Longitudinal Position of Centre of Buoyancy on Ship Resistance Using RANSE Method,’ Naval Engineers Journal, vol. 132, no. 4, pp. 151-160, 2020.
  • 6. T. N. Tu et al., ‘Numerical prediction of propeller-hull interaction characteristics using RANS method,’ Polish Maritime Research, vol. 26, no. 2, pp. 163-172, 2019. https:// doi.org/10.2478/pomr-2019-0036.
  • 7. Y. Zhang et al., ‘Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions,’ Polish Maritime Research, vol. 27, no. 4, pp. 26-35, 2020. https:// doi.org/10.2478/pomr-2020-0063.
  • 8. H. Nouroozi, and H. Zeraatgar, ‘Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,’ Polish Maritime Research, vol. 27, no. 1, pp. 6-17, 2020. https://doi.org/10.2478/pomr-2020-0001.
  • 9. T. N. Tu et al.,’ Numerical Study on the Influence of Trim on Ship Resistance in Trim Optimization Process,’ Naval Engineers Journal, vol. 130, no. 4, pp. 133-142, 2018.
  • 10. N. Sakamoto et al., ‘Estimation of Resistance and SelfPropulsion Characteristics for Low L/B Twin-Skeg Container Ship by a High-Fidelity RANS Solver,’ Journal of Ship Research, vol. 57, no. 01, pp. 24-41, 2013. https://doi. org/10.5957/jsr.2013.57.1.24.
  • 11. T. Q. Chuan et al., ‘Numerical Study of Effect of Trim on Performance of 12500DWT Cargo Ship Using RANSE Method,’ Polish Maritime Research, vol. 29, no. 1, pp. 3-12, 2022. https://doi.org/10.2478/pomr-2022-0001.
  • 12. J. Choi et al., ‘Resistance and propulsion characteristics of various commercial ships based on CFD results,’ Ocean Engineering, vol. 37, no. 7, pp. 549-566, 2010. https://doi. org/10.1016/j.oceaneng.2010.02.007.
  • 13. S. Bhushan et al., ‘Model-and full-scale URANS simulations of Athena resistance, powering, seakeeping, and 5415 maneuvering,’ Journal of Ship Research, vol. 53, no. 4, pp. 179-198, 2009. https://doi.org/10.5957/jsr.2009.53.4.179.
  • 14. K.-W. Song et al., ‘Experimental and numerical study on the scale effect of stern flap on ship resistance and flow field,’ Ships and Offshore Structures, vol. 15, no. 9, pp. 981997, 2020. https://doi.org/10.1080/17445302.2019.1697091.
  • 15. Y. K. Demirel, O. Turan, and A. Incecik, ‘Predicting the effect of biofouling on ship resistance using CFD,’ Applied Ocean Research, vol. 62, pp. 100-118, 2017. https://doi. org/10.1016/j.apor.2016.12.003.
  • 16. B. Guo, G. Deng, and S. Steen, ‘Verification and validation of numerical calculation of ship resistance and flow field of a large tanker,’ Ships and Offshore Structures, vol. 8, no 1, pp. 3-14, 2013. https://doi.org/10.1080/17445302.2012.669263.
  • 17. Y. Zhang et al., ‘Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions,’ Polish Maritime Research, vol. 27, no. 4, pp. 26-35, 2020. https:// doi.org/10.2478/pomr-2020-0063.
  • 18. N. T. N. Hoa et al., ‘Numerical investigating the effect of water depth on ship resistance using RANS CFD method,’ Polish Maritime Research, vol. 26, no. 3, pp. 56-64, 2019. https://doi.org/10.2478/pomr-2019-0046.
  • 19. https://t2015.nmri.go.jp/Instructions_JBC/instruction_JBC. html.
  • 20. https://t2015.nmri.go.jp/Instructions_JBC/Case_1-1a.html.
  • 21. ITTC 2011. Practical guidelines for ship CFD applications. In: Recommended Procedure and Guidelines, ITTC 7.5–0302–03. Available from https://ittc.info/media/1357/75-0302-03.pdf.
  • 22. Z. Yong et al., ‘Turbulence model investigations on the boundary layer flow with adverse pressure gradients,’ Journal of Marine Science, vol. 14, no. 2, pp. 170-174, 2015. https://doi.org/10.1007/s11804-015-1303-0.
  • 23. T.-H. Le et al., ‘Numerical investigation on the effect of trim on ship resistance by RANSE method,’ Applied Ocean Research, vol. 111, p. 102642, 2021. https://doi.org/10.1016/j. apor.2021.102642.
  • 24. R. A. Repetto, ‘Computation of Turbulent Free Surface Flows Around Ships and Floating Bodies’. 2001: Arbeitsbereiche Schiffbau der Techn. Univ. Hamburg-Harburg.
  • 25. ITTC – Recommended Procedures and Guidelines, 2017. Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures. ITTC 7.5-03-01-01. Available from https://www.ittc.info/media/8153/75-03-01-01.pdf.
  • 26. F. Stern et al., ‘Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures,’ Journal of Fluids Engineering, vol. 123, no. 4, pp. 793-802, 2001. https://doi.org/10.1115/1.1412235.
  • 27. H. Lackenby, ‘On the systematic geometrical variation of ship forms,’ Trans INA, vol. 92, pp. 289-316, 1950.
  • 28. M.-I. Roh, and K.-Y. Lee, ‘Computational ship design’. Springer, 2018. https://doi.org/10.1007/978-981-10-4885-2.
  • 29. A. F. Molland, S. R. Turnock, and D. A. Hudson, ‘Ship resistance and propulsion’. Cambridge University Press, 2017https://doi.org/10.1017/CBO9780511974113.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c82a2286-3a6a-425e-8a07-d7b01d31d7bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.