Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The study investigates the impact of birefringence exhibited by the cavity material of a fiber-optic Fabry–Pérot interferometer on its transfer function. The theoretical approach to analyze the effect of birefringence in the cavity of a plane Fabry–Pérot interferometer is described. The case of high- and low-finesse interferometer is investigated. It is shown that introduction of a birefringent medium of optimized parameters can be used to increase the density of interference fringes in certain wavelength range – the feature can be used either for reduction of the cavity length in an interferometric sensor or operation with sources of narrower spectral characteristics.
Czasopismo
Rocznik
Tom
Strony
241--248
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] MD. RAJIBUL ISLAM, MUHAMMAD MAHMOOD ALI, MAN-HONG LAI, KOK-SING LIM, HARITH AHMAD, Chronology of Fabry–Perot interferometer fiber-optic sensors and their applications: a review, Sensors 14(4), 2014, pp. 7451–1788, DOI: 10.3390/s140407451.
- [2] YI WEN HUANG, JIN TAO, XU GUANG HUANG, Research progress on F-P interference—based fiber -optic sensors, Sensors 16(9), 2016, article ID 1424, DOI: 10.3390/s16091424.
- [3] ASCORBE J., CORRES J.M., ARREGUI F.J., MATIAS I.R., Recent developments in fiber optics humidity sensors, Sensors 17(4), 2017, article ID 893, DOI: 10.3390/s17040893.
- [4] CAI-BIN YU, YU WU, CHEN LI, FAN WU, JIN-HAO ZHOU, YUAN GONG, YUN-JIANG RAO, YUAN-FU CHEN, Highly sensitive and selective fiber-optic Fabry–Perot volatile organic compounds sensor based on a PMMA film, Optical Materials Express 7(6), 2017, pp. 2111–2116, DOI: 10.1364/OME.7.002111.
- [5] JĘDRZEJEWSKA-SZCZERSKA M., Response of a new low-coherence Fabry–Perot sensor to hematocrit levels in human blood, Sensors 14(4), 2014, pp. 6965–6976, DOI: 10.3390/s140406965.
- [6] BEN XU, YI YANG, ZHENBAO JIA, WANG D.N., Hybrid Fabry–Perot interferometer for simultaneous liquid refractive index and temperature measurement, Optics Express 25(13), 2017, pp. 14483–14493, DOI: 10.1364/OE.25.014483.
- [7] CHENG-LING LEE, HSUAN-YU HO, JHENG-HONG GU, TUNG-YUAN YEH, CHUNG-HAO TSENG, Dual hollow core fiber-based Fabry–Perot interferometer for measuring the thermo-optic coefficients of liquids, Optics Letters 40(4), 2015, pp. 459–462, DOI: 10.1364/OL.40.000459.
- [8] PINGGANG JIA, GUOCHENG FANG, TING LIANG, YINGPING HONG, QIULIN TAN, XIAOYONG CHEN, WENYI LIU, CHENYANG XUE, JUN LIU, WENDONG ZHANG, JIJUN XIONG, Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-tem-perature application, Sensors and Actuators B: Chemical 244, 2017, pp. 226–232, DOI: 10.1016/ j.snb.2016.12.123.
- [9] GUIGEN LIU, QIWEN SHENG, WEILIN HOU, MING HAN, High-resolution, large dynamic range fiber-op-tic thermometer with cascaded Fabry–Perot cavities, Optics Letters 41(21), 2016, pp. 5134–5137, DOI: 10.1364/OL.41.005134.
- [10] POEGGEL S., DURAIBABU D., KALLI K., LEEN G., DOOLY G., LEWIS E., KELLY J., MUNROE M., Recent improvement of medical optical fibre pressure and temperature sensors, Biosensors 5(3), 2015,pp. 432–449, DOI: 10.3390/bios5030432.
- [11] BEN XU, CHAO WANG, WANG D.N., YAMING LIU, YI LI, Fiber-tip gas pressure sensor based on dual capillaries, Optics Express 23(18), 2015, pp. 23484–23492, DOI: 10.1364/OE.23.023484.
- [12] JIAJUN TIAN, YUZHU JIAO, SHAOBO JI, XIAOLONG DONG, YONG YAO, Cascaded-cavity Fabry–Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity com¬pensation, Optics Communications 412, 2018, pp. 121–126, DOI: 10.1016/j.optcom.2017.12.005.
- [13] BORN M., WOLF E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) Ed., Cambridge University Press, Cambridge, 1999.
- [14] SALEH B.E.A., TEICH M.C., Fundamentals of Photonics, 2nd Ed., Hoboken, N.J., Wiley Interscience, 2007.
- [15] HIRSCH M., MAJCHROWICZ D., WIERZBA P., WEBER M., BECHELANY M., JĘDRZEJEWSKA-SZCZERSKA M., Low-coherence interferometric fiber-optic sensors with potential applications as biosensors, Sensors17(2), 2017, article ID 261, DOI: 10.3390/s17020261.
- [16] MAJCHROWICZ D., HIRSCH M., WIERZBA P., BECHELANY M., VITER R., JĘDRZEJEWSKA-SZCZERSKA M., Application of thin ZnO ALD layers in fiber-optic Fabry–Pérot sensing interferometers, Sensors 16(3), 2016, article ID 416, DOI: 10.3390/s16030416.
- [17] XU A. ZHANG, YI-AN CHEN, ABHIJEET BAGAL, CHIH-HAO CHANG, Enhanced total internal reflection using low-index nanolattice materials, Optics Letters 42(20), 2017, pp. 4123–4126, DOI: 10.1364/OL.42.004123.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c828037a-6d3b-4979-ad55-e4add8b979ff