
A
pp

lie
d

M
at

he
m

at
ic

s

7

Procedural Content Generation in Game
Development Process

Grzegorz Jaśkiewicz

Warsaw University of Technology, The Faculty of Electronics and Information Technology ul. Nowowiejska 15/19,
00-665 Warsaw, Poland

Th is article describes procedural content generation algorithms used by an independent video game developer in a level design

process for the logical game Keri Tap. Genetic algorithms were used as the computational core of the level generation routines.

Th e research that was carried out in order to defi ne good algorithm setup has been described. Main idea of this article is to show

that PCG [14] methods can be used by small independent video game developers to gain measurable benefi ts.

Keywords: Procedural content generation, Game development, Video games, Genetic algorithms, Level design.

Background

A video game consists of a game engine and digital

content. A game engine is a software component which

simulates and visualizes a game world. It handles graphi-

cal rendering, player input, network communication,

etc. Digital content is a form of description of a game

world — it contains graphics, models, animations, maps,

level scripts, dialogues, etc. Comparing the most

important equation of theoretical computer science [16]:

programs = algorithms + data structures

the game engine serves as algorithms component and the

digital content as the data structures part. Whereas the

game engine can be bought as off the shelf or confi gure to

order product, it always takes much eff ort to create

digital content, if the game is meant to be unique.

Production of digital content sometimes consumes even

90% of the game development eff ort, whereas rest is

spent on customizing the game engine and crafting

supporting tools.

Th erefore any savings in the content part of the game

are very benefi cial for the game producer. Some producers

provide players user-friendly development tools and

encourage them to create own content like game levels,

own avatars or game objects. With such means game

producers are trying to utilize power of Web 2.0 [12]

trend. Th is could make games more interesting and also

give players more content to consume [11]. According

to the 90-9-1 rule [10] only small fraction of active

players generates most of game content, so to take the

advantage of the player-generated content a game must

have a huge community of active players. Also a special

software infrastructure is needed to run this process.

Th ese two factors generally makes player-generated

content out of the reach for small developers launching

a new game.

Other approach is a Procedural Content Generation

(PCG) [7]. In such approach, instead of using human

labour, computers are employed to generate game

content. PCG is methodology which includes wide

family of algorithms and techniques. Particular PCG

solutions are tailored to concrete use cases. In some cases

there exists ready-made solutions which are only tuned

up and used in game, but it is also common for game

developers to develop own PCG solutions. Th e choice

of particular solution depends on many factors, which

include type of asset to be generated, specifi c asset

requirements as well as execution time given for

algorithm to generate an asset. Th e content is generated

either in a game design phase or in a gameplay.

Th e moment when PCG can take place has signifi cant

impact on time execution constraints for PCG. An

example of PCG that takes part in a gameplay is

dynamically building dialogs with the game characters

by constructing sentences using knowledge and

8

Grzegorz JaśkiewiczGrzegorz Jaśkiewicz

grammatical rules rather than static dialog trees. Open

worlds [8] in games are implemented with help of the

ingame PCG. An example of PCG in the design phase

is creation of 3D models of trees using tree growth

schema [13] rather than just work of a graphic designer.

PCG in a gameplay should not be computationally

intensive in order not to impede the game performance,

while on PCG used in a design phase more resources

could be spent. Additionally, the results of the design

phase PCG could be reviewed and enhanced as necessary.

Th e next section of the article describes development

and application of PCG method in a logic game Keri

Tap. Th is is an interesting case study, because game was

developed by small game developer and using PCG has

impacted positively much of the production phase.

Discussed PCG algorithm was developed by the game

developer.

Methods and Materials

Keri Tap was manufactured by an independent game

developer Crazy Rabbit Lab sp. j. Th e game was build

and sold for iOS devices. Th e game consisted of 30

puzzles. Each puzzle was played on a rectangular grid

with the square fi elds. Some fi elds were inactive. Th ere

were also some player pawns on the board. Th e goal of

the player was to visit all the active fi elds with any pawn.

A visited fi eld turned inactive after visiting it. Some fi elds

were special e.g. they could be entered and left from the

specifi ed direction. Th e sample puzzle taken out from

the game has been shown in the Fig 1.

Th e project team consisted of 4 people, who shared

responsibilities of a programmer, graphical artist, sound

artist, level designer, tester and sales person1. For

independent video game developers small teams are very

common.

Th e level design process assumed that there will be

60 levels which could be reviewed, rated by diffi culty and

the half of them would be included in the game

distribution. Th e task of the level design turned out to

be tedious and in the long run levels created by one

person turned out to be repetitive. In order to aid level

designer there was created a program which generated

puzzles with solutions. Th en the level designer could just

review and enhance them.

Th e program for puzzle generation has created

random boards by starting with a complete board and

selecting at random fi elds which were turned inactive —

occasionally some symmetries were applied to obtain

more eye-catching board. Th en the program tried to

select starting locations for pawns in order to minimalize

1 Th ere were no-one in the team who would cover all those

roles alone.

the number of pawns on the board that are still able to

solve the puzzle. In order to achieve this, the program

has searched for the minimal Hamiltonian path coverage

[1] of the board represented as a sub-graph of a rectan-

gular lattice [3]. Th ere was a constraint put on paths

which disallowed to cross each other. Th e start of each

path indicated to the starting position of the pawn. Each

path has described the possible trajectory for the pawn

to solve the puzzle. Th e sample path coverage was shown

in the Fig. 2.

Th e genetic algorithm [6] was used to iteratively

improve the set of path coverages for the given graph and

to fi nd the best solution. PCG method were applied

earlier to similar problems e.g [4] and there existed

successful applications of GA in PCG e.g in [9]. However

graph theory related concept of the Keri Tap game was

not widely discussed and new algorithm setup had to be

defi ned and tested. Path coverages were treated as alleles

in this algorithm. In order to do so, they were encoded

as permutations of the board fi elds. If consecutive fi elds

in the permutation were adjacent on the board, they

were treated as a part of the same path. Otherwise, the

second fi eld was treated as a start of the new path. For

example one of possible alleles for the path coverage

presented in fi gure (2) is:

Fig. 1. Sample puzzle in Keri Tap. Dark squares are inactive
fields, light squares are active fields. The star acts as
a pawn — it stands on the starting field.

Fig. 2. A path coverage for the sample board — suboptimal
one.

A
pp

lie
d

M
at

he
m

at
ic

s

9

Procedural Content Generation in Game Development ProcessProcedural Content Generation in Game Development Process

[(2, 2), (2, 3), (1, 3), (1, 2), (1, 1), (2, 1), (3, 1),

(3, 2), (3, 3)]

Th e task of the algorithm was to minimalize the number

of the used paths. It can be observed that it is not

possible to encode all of the path coverages, but it is

possible to encode minimal path coverages in this way.

With this representation it was possible to use Permuta-

tion Crossover (PMX) and Ordered Crossover (ODX)

[5] operators.

Another representation of the path coverage is

a graph representation. Permutations were treated as

a paths in graph, so it was possible to use Edge Recom-

bination Crossover (EROX) operator [15].

In the experiments there have also been tested

diff erent mutation operators like displacement and

insertion, which operated on the permutational represen-

tation of the path coverages.

Results

An experiment was run in order to determine the best

setup for a genetic algorithm i.e. which crossover,

mutation and selection operator should be chosen.

It turned out that the selection of the crossover operator

has the greatest infl uence on quality of the results. All

crossover operators were tested in the same settings. Th e

full board was chosen as a benchmark. Th e algorithm

which found the solution in the smallest amount of time

was chosen for future evaluation.

Fig. 3. Evolution of fitness function depending on choice of
different crossover operators.

After the initial experiments it was observed that EROX

operator caused algorithm to stall in some local minima,

while ODX operator provided very chaotic exploration

pattern. In brief, EROX showed exploatative properties,

while ODX displayed more exploratative ones [2]. With

those observations new combined EROX-ODX operator

was created. It has chosen EROX or ODX operator

depending on the variance of fi tness in population.

Lower variance may indicate that the algorithm is not

improving and caused bigger probability of explorative

crossover operator.

Further experiments, involving tests of new crossover

operator, were carried out using same testing scenario. It

turned out that combined EROX-ODX operator

performs best of all in this task. Plot (3) shows evolution

of fi tness function through algorithm run.

When fi tness function has a value of -1 it means that

one path covering all board was found — which was

optimal. Fitness function has the negative values, because

it was inverted in order to have it monotonically growing.

Relying on these results ERX-ODX operator was

chosen to include in fi nal algorithm which was run to

generate puzzles.

Disscussion

Th e new tool has enhanced level design process. Th e level

designer was not forced to create new puzzles, but used

the presented tool in order to generate diff erent puzzles.

After that, reviewer rated them and reviewed associated

solutions. Th e level design process employing PCG was

schematically shown in the Fig. 4. Created puzzles were

also enhanced later by using hints and obstacles, as those

elements of the board were not produced by PCG

algorithm.

Th e new tool also impacted a testing procedure.

Th ere was a problem with testing, because an author of

puzzle is usually not a reliable critic of own product. Th e

previous approach required testing puzzles by other team

members who played a role of puzzle critics. With the

new approach the designer could play a role of the puzzle

critic as he was not an author of a puzzle. Th is saved

some work of 1 men, but in the team of 4 people this is

much. Amount of testing iterations of single puzzle was

reduced.

In presented case there was a risk of project failure

an inherent trait of the research projects. Creation of

a new tool for PCG should be aware decision of game

the producer. In Keri Tap however, the project completed

successfully and about 20% of the game content was

generated with PCG — this ratio is not remarkable, but

the decision of using PCG was made in halfway of the

project development phase. Th ere are plans to improve

this method — the ultimate goal would be to generate

puzzles with a predictable diffi culty level on demand2.

Conclusions

Th e main contribution of this paper is to present PCG

method as the tool, which is usable not only by large

game producers with R&D departments, but also by

2 In a gameplay, not in a design phase.

10

Grzegorz JaśkiewiczGrzegorz Jaśkiewicz

small independent video game developers. Th is result is

backed up with case study of Keri Tap game. In presented

case-study level design process was simplifi ed what

resulted in time-saving, which could be spent on other

issues.

Th e minor contribution was to show application of

GA in very specifi c problem related to graph theory and

also present application of this theory in game

development industry. It’s hard to generalize this solution

for other games, but it’s important to promote application

of the mathematics to construct logical video games.

Fig. 4. Level design process with PCG method in Keri Tap.

Acknowledgements

I would like to thank my mentor prof. Jarosław Arabas

for helping me to do my research.

References
[1] Alon Itai, C.H.P., and J.L. Szwarcfi ter. “Hamilton paths

in grid graphs”. Society for Industrial and Applied

Mathematics 11 (4), 1982: 676–686.

[2] Arabas, J. “Predicting genetic diversity of populations in

evolutionary search in R1 ”. Proceedings of the 2011

Evolutionary Computation and Global Optimization

conference, 2011.

[3] Arkin, E.M., et al. Not being (super)thin or solid is hard:

A study of grid hamiltonicity, 2008.

[4] Ashlock, D., C. Lee, and C. McGuinness. “Search-based

procedural generation of maze-like levels”. IEEE Trans.

Comput. Intellig. and AI in Games 3 (3), 2011: 260–273.

[5] Buckland, M., and M. Collins. AI Techniques for Game

Programming. Premier Press, 2002.

[6] Goldberg, D.E. Genetic Algorithms in Search, Optimization

and Machine Learning. 1st ed. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1989.

[7] Gudlaugsson, B. Procedural Content Generation. Reykjavik

University, 2006.

[8] Juul, J. “Th e open and the closed: Game of emergence

and games of progression”. In Proc. Computer Game and

Digital Cultures, 2002: 323–329.

[9] Moraglio, A., J. Togelius, and S.M. Lucas. “Product

geometric crossover for the Sudoku puzzle”. Proceedings

of the IEEE Congress on Evolutionary Computation

(CEC), 2006.

[10] Nielsen, J. Participation inequality: Encouraging more users

to contribute, 2006.

[11] Ondrejka, C., Ed. Escaping the Gilded Cage: User Created

Content and Building the Metaverse. New York Law

School, 2003.

[12] O’reilly, T. What is web 2.0? design patterns and business

models for the next generation of software.

[13] Prusinkiewicz, P., and A. Lindenmayer. Th e algorithmic

beauty of plants. New York, NY, USA: Springer-Verlag

New York, Inc., 1996.

[14] Togelius, J., et al. “Search-based procedural content

generation: A taxonomy and survey”. IEEE Trans.

Comput. Intellig. and AI in Games 3 (3), 2011: 172-

-186.

[15] Whitley, d., T. Starkweather, and D. Shaner “Th e traveling

salesman and sequence scheduling: Quality solutions

using genetic edge recombination”. In: In Handbook of

Genetic Algorithms, 1990: 350–372.

[16] Wirth, N. Algorithms + Data Structures = Programs. Upper

Saddle River, NJ, USA: Prentice Hall PTR, 1978.

