PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design Low Complexity SCMA Codebook Using Arnold’s Cat Map

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 5G wireless communications, sparse code multiple access (SCMA) – a multi-dimensional codebook based on a specific category of the non-orthogonal multiple access (NOMA) technique - enables many users to share non-orthogonal resource components with a low level of detection complexity. The multi-dimensional SCMA (MD-SCMA) codebook design presented in this study is based on the constellation rotation and interleaving method. Initially, a subset of the lattice Z 2 is used to form the mother constellation’s initial dimension. The first dimension is then rotated to produce other dimensions. Additionally, interleaving is employed for even dimensions to enhance fading channel performance. Arnold’s chaotic cat map is proposed as the interleaving method to reduce computational complexity. Performance of the SCMA codebook based on interleaving is evaluated by comparing it with selected codebooks for SCMA multiplexing. The metrics used for performance evaluation purposes include bit error rate (BER), peak to average power ratio (PAPR), and minimum Euclidean distance (MED), as well as complexity. The results demonstrate that the suggested codebook with chaotic interleaving offers performance that is equivalent to that of the conventional codebook based on interleaving. It is characterized by lower MED and higher BER compared to computer-generated and 16-star QAM codebook design approaches, but its complexity is lower than that of the conventional codebook based on interleaving.
Rocznik
Tom
Strony
13--20
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • University, College of Information Engineering
  • University, College of Information Engineering
Bibliografia
  • [1] Z. Ding, Z. Yang, P. Fan, and H.V. Poor, “On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users”, IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1501–1505, 2014 (DOI: 10.1109/LSP.2014.2343971).
  • [2] Z. Liu and L-L. Yang, “Sparse or dense: a comparative study of code domain NOMA systems”, IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4768–4780, 2021 (DOI: 10.1109/TWC.2021.3062235).
  • [3] E. Catak, F. Tekce, O. Dizdar, and L. Durak-Ata, “Multi-user shared access in massive machine-type communication systems via superimposed waveforms”, Physical Communication 37 (2019), 100896, 2019 (DOI: 10.1016/j.phycom.2019.100896).
  • [4] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends”, IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015, (DOI: 10.1109/MCOM.2015.7263349).
  • [5] D. Cai, P. Fan, X. Lei, Y. Liu, and D. Chen, “Multi-dimensional SCMA codebook design based on constellation rotation and interleaving”, 83-rd IEEE Vehicular Technology Conference (VTC Spring), pp. 1–5, 2016 (DOI: 10.1109/VTCSpring.2016.7504356).
  • [6] S.A. Hussain, et al., “A review of codebook design methods for sparse code multiple access”, Indonesian Journal of Electrical Engineering and Computer Science, pp. 927–935, 2021 (DOI: 10.11591/ijeecs.v22.i2.pp927-935).
  • [7] Y.M.J. Licea, “Resource allocation for uplink code-domain nonorthogonal multiple access”, Ph.D. thesis, Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Manchester University, 2021 (URL: https://www.research.manc hester.ac.uk/portal/files/205626604/FULL_TEXT.PDF).
  • [8] J.L.L. Bonilla, S.V. Beltrán, I.S. Rivera, and F.M. Pinón, “Construction of SCMA CodeBooks using the phase rotation method”, IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1–8, 2018 (DOI: 10.1109/ROPEC.2018.8661414).
  • [9] S. Liu, J. Wang, J. Bao, and C. Liu, “Optimized SCMA Codebook Design by QAM Constellation Segmentation With Maximized MED”, IEEE Access, vol. 6, pp. 63232–63242, 2018 (DOI: 10.1109/ACCESS.2018.2876030).
  • [10] L. Yu, P. Fan, D. Cai, and Z. Ma, “Design and analysis of SCMA codebook based on star-QAM signaling constellations”, IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10543–10553, 2018 (DOI: 10.1109/TVT.2018.2865920).
  • [11] Y.M. Tabra and B.M. Sabbar, “New Computer Generated-SCMA Codebook With Maximised Euclidian Distance for 5G”, Iraqi Journal of Information & Communications Technology, vol. 2, no. 2, pp. 9–24, 2019 (DOI: 10.31987/ijict.2.2.64).
  • [12] Z. Mheich, L. Wen, P. Xiao, and A. Maaref, “Design of SCMA codebooks based on golden angle modulation”, IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1501–1509, 2019 (DOI: 10.1109/TVT.2018.2886953).
  • [13] Y-M. Chen and J-W. Chen, “On the design of near-optimal sparse code multiple access codebooks”, IEEE Trans. Commun., vol. 68, no. 5, pp. 2950–2962, 2020 (DOI: DOI: 10.1109/TCOMM.2020.2974213).
  • [14] F. d. Silva, D. Le Ruyet, and B.F. Uchoa-Filho, ”Threshold-Based Edge Selection MPA for SCMA”, IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 2957–2966, 2020 (DOI: 10.1109/TVT.2020.2966333).
  • [15] M. Vameghestahbanati, “Designing Multidimensional Constellations and Efficient Detection Schemes for Sparse Code Multiple Access (SCMA) Systems”, Ph.D. dissertation, Carleton University, (URL: https://curve.carleton.ca/f481d0f2-ec66-44b4- a783-1c602d2c210a).
  • [16] G. Peterson, “Arnold’s Cat Map”, Math 45 – Linear Algebra Fall, 1997 (DOI: 10.3840/002296)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c824edce-6ec4-4a06-abba-b136daafa20b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.