PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The fatigue crack behavior of 7N01-T6 aluminum alloy in different particle environments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental method of evaluating the fatigue behavior of alloys in different particle environments was designed, and the effects of four kinds of particles (i.e., graphite, CaO, Al2O3, and MnO2) on the crack propagating behavior of 7N01-T6 behaviour alloys were investigated. The results show that the particles deposited on the crack surface exert significant influence on the fatigue crack propagation behavior thereof. This influence strongly depends on the elastic moduli of the particles (Ep). As Ep is less than that of aluminium alloy (EAl), the particle accelerates the fatigue-crack-growth rate (FCGR) in the alloys due to the lubrication of the particles on the mating fracture surfaces. When the difference between Ep and EAl is small, the particle effect on the FCGRs of the alloys is small due to the counteraction between the decrease in friction and the promotion on the crack closure of mating fracture surfaces. When Ep is greater than EAl, the particles slow down the FCGRs of the alloys on account of significant crack closure effect. As Ep is much greater than EAl, the particles increase the FCGRs because of the increasing stress concentration at the crack tip.
Rocznik
Strony
468--483
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
autor
  • Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Advanced Research Center, Central South University, Changsha 410083, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
autor
  • School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, People’s Republic of China
Bibliografia
  • [1] Shou WB, Yi DQ, Liu HQ, Tang C, Shen FH, Wang B. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Arch Civ Mech Eng. 2016;16(3):304–12.
  • [2] Dobrzańska-Danikiewicz AD, Tański T, Domagała-Dubiel J. Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys. Arch Civ Mech Eng. 2012;12(3):318–26.
  • [3] Chen YQ, Pan SP, Liu WH, Liu X, Tang CP. Morphologies, orientation relationships, and evolution of the T-phase in an Al-Cu-Mg-Mn alloy during homogenisation. J Alloys Compd. 2017;709:213–26.
  • [4] Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng A. 2013;580:150–8.
  • [5] Wang YL, Pan QL, Li LL, Li B, Wang Y. Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate. Mater Des. 2014;55:857–63.
  • [6] Beretta S, Ghidini A, Lombardo F. Fracture mechanics and scale effects in the fatigue of railway axles. Eng Fract Mech. 2005;72(2):195–208.
  • [7] Sasaki T, Honda T. An experimental study on fatigue crack growth in lap joints with multiple fastener holes. WIT Trans Eng Sci. 2002;37:225–34.
  • [8] Chemin AEA, Saconi F, Filho WWB, Spinelli D, Ruchert COFT. Effect of saline corrosion environment on fatigue crack growth of 7475-T7351 aluminum alloy under TWIST flight loading. Eng Fract Mech. 2015;141:274–90.
  • [9] Burns JT, Gupta VK, Agnew SR, Gangloff RP. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al-Zn-Mg-Cu alloys. Int J Fatigue. 2013;55:268–75.
  • [10] Ma G, Li R, Li R. Effects of stress concentration on low-temperature fracture behavior of A356 alloy. Mater Sci Eng A. 2016;667:459–67.
  • [11] Shlyannikov VN, Yarullin RR, Ishtyryakov IS. Effect of temperature on the growth of fatigue surface cracks in aluminum alloys. Theor Appl Fract Mec. 2018;96:758–67.
  • [12] Zhu X, Jones JW, Allison JE. Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: stress-controlled fatigue life response. Metall Mater Trans A. 2008;39(11):2681–8.
  • [13] Yao XX, Sandström R, Stenqvist T. Strain-controlled fatigue of a braze clad Al-Mn-Mg alloy at room temperature and at 75 and 180 Mater Sci Eng A. 1999;267(1):1–6.
  • [14] Murakami Y, Matsuoka S. Effect of hydrogen on fatigue crack growth of metals. Eng Fract Mech. 2010;77(11):1926–40.
  • [15] Hui L, Zhou S, Xu L, Ma SH, Wang Y, Zhang YY. The influence of humid environment on fatigue property of pre-corroded 7XXX aluminum alloy. Adv Mater Res. 2011;314–316:1406–10.
  • [16] Singh SS, Williams JJ, Lin MF, Xiao X, De Carlo F, Chawla N. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography. Mater Res Lett. 2014;2(4):217–20.
  • [17] Golden PJ, Grandt AF Jr, Bray GH. A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens. Int J Fatigue. 1999;21:211–9.
  • [18] Kermanidis AT, Zervaki AD, Haidemenopoulos GN, Pantelakis SG. The influence of salt fog exposure on the fatigue performance of Alclad 6xxx aluminum alloys laser beam welded joints. J Mater Sci. 2010;45(16):4390–400.
  • [19] Maierhofer J, Simunek D, Gänser HP, Pippan R. Oxide induced crack closure in the near threshold regime: the effect of oxide debris release. Int J Fatigue. 2018;117:21–6.
  • [20] Ambat R, Dwarakadasa ES. The influence of pH on the corrosion of medium strength aerospace alloys 8090, 2091 and 2014. Corros Sci. 1992;33:681–90.
  • [21] Lv SL, Cui Y, Gao XS, Srivatsan TS. Influence of exposure to aggressive environment on fatigue behavior of a shot peened high strength aluminum alloy. Mater Sci Eng A. 2013;574:243–52.
  • [22] Henaff G, Odemer G, Benoit G, Koffi E, Journet B. Prediction of creep-fatigue crack growth rates in inert and active environments in an aluminium alloy. Int J Fatigue. 2009;31(11–12):1943–51.
  • [23] Holtz RL, Pao PS, Bayles RA, Longazel TM, Goswami R. Corrosion-fatigue behavior of aluminum alloy 5083-H131 sensitized at 448 K (175 °C). Matall Mater Trans A. 2012;43(8):2839–49.
  • [24] Lynch S. Some fractographic contributions to understanding fatigue crack growth. Int J Fatigue. 2017;104:12–26.
  • [25] Coloma PS, Izagirre U, Belaustegi Y, Jorcin JB, Cano FJ, Lapeńa N. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications. Appl Surf Sci. 2015;345:24–35.
  • [26] Arnold EM, Schubbe JJ, Moran PJ, Bayles RA. Comparison of SCC thresholds and environmentally assisted cracking in 7050-T7451 aluminum plate. J Mater Eng Perform. 2012;21(11):2480–6.
  • [27] Cheng Y, Mai YW. Effect of crack depth and specimen width on fracture toughness of a carbon steel in the ductile-brittle transition region. Int J Press Vessel Pip. 2000;77(6):313–9.
  • [28] Chen YQ, Zhang H, Pan SP, Song YF, Liu X, Liu WH. Efects of service environment and pre-deformation on the fatigue behavior of 2524 aluminium alloy. Arch Civ Mech Eng. 2020;20(5):1–16.
  • [29] Yin DY, Liu HQ, Chen YQ, Yi DQ, Wang B. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy. Int J Fatigue. 2016;84:9–16.
  • [30] Zhan W, Lu N, Zhang C. A new approximate model for the R-ratio effect on fatigue crack growth rate. Eng Fract Mech. 2014;119:85–96.
  • [31] Huang XP, Torgeir M, Cui WC. An engineering model of fatigue crack growth under variable amplitude loading. Int J Fatigue. 2008;30:2–10.
  • [32] Wallin K. Statistical aspects of fatigue life and endurance limit. Fatigue Fract Eng Mater Struct. 2010;33(6):333–44.
  • [33] Wallin K. Master curve analysis of the “Euro” fracture toughness dataset. Eng Fract Mech. 2002;69:451–481.
  • [34] Lei ZQ, Hong YS, Xie JJ, Sun CQ, Zhao AG. Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Mater Sci Eng A. 2012;558:234–41.
  • [35] Lu LT, Zhang JW, Shiozawa K. Influence of inclusion size on S-N curve characteristics of high-strength steels in the giga-cycle fatigue regime. Fatigue Fract Eng Mater Struct. 2009;32(8):647–55.
  • [36] Kim JK, Shim DS. The variation in fatigue crack growth due to the thickness effect. Int J of Fatigue. 2000;22(7):611–8.
  • [37] Chan KS. Variability of large-crack fatigue-crack-growth thresholds in structural alloys. Metall Mater Trans A. 2004;35(12):3721–35.
  • [38] Pippan R, Hohenwarter A. Fatigue crack closure: a r eview of the physical phenomena. Fatigue Fract Eng Mater Struct. 2017;40(4):471–95.
  • [39] Ishihara S, Sugai Y, McEvily AJ. On the distinction between plasticity-and roughness-induced fatigue crack closure. Metall Mater Trans A. 2012;43(9):3086–96.
  • [40] Ritchie RO, Suresh S. A geometric model for fatigue crack closure induced by fracture surface roughness. Metall Trans A. 1982;13(9):1627–31.
  • [41] Jones R, Molent L, Walker K. Fatigue crack growth in a diverse range of materials. Int J Fatigue. 2012;40:43–50.
  • [42] Yamashita J, Asano S. Cohesive properties of alkali halides and simple oxides in the local-density formalism. J Phys Soc Japan. 1983;52:3506–13.
  • [43] Franco R, Blanco MA, Pendás AM, Francisco E, Recio JM. Atomistic simulation of the pressure-temperature-volume diagramie α-Al2O3. Solid State Commun. 1996;98(1):41–4.
  • [44] Towler MD, Allan NL, Harrison NM, Saunders VR, Mackrotd WC, Aprŕ E. Ab initio study of MnO and NiO. Phys Rev B. 1994;50(8):5041–54.
  • [45] Ben D, Yang H, Ma Y, Wang Q, Tian Y, Zhang P, Duan Q, Hang Z. Declined fatigue crack propagation rate of a high-strength steel by electropulsing treatment. Adv Eng Mater. 2019;1801345:1–8.
  • [46] Chicot D, Mendoza J, Zaoui A, Louis G, Lepingle V, Roudet F, Lesage J. Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeOOH) by instrumented indentation and molecular dynamics analysis. Mater Chem Phys. 2011;129(3):862–70.
  • [47] Yong WY, Liu B, Kodur V. Effect of temperature on strength and elastic modulus of high-strength steel. J Mater Civ Eng. 2013;25(2):174–82.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8233b79-b88c-4ca6-9f9a-f2038526a816
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.