PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of material deformation behaviour during DRECE: the sheet metal SPD process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The material deformation behaviour during the innovative SPD process called DRECE (Dual Rolls Equal Channel Extrusion) has been analysed by FEM simulations. In the process, a workpiece in the form of a strip is subjected to plastic deformation by passing through the angular channel; however, the workpiece dimensions remain the same after a pass is finished. Performing consecutive passes allow for increasing the effective strain in the material to a required level. In the conducted simulations two various channel angles (108° and 113°) have been taken into consideration, as well as two processing routes, A and C (without and with turning the strip upside-down between consecutive passes, respectively). The analysis of simulation results has revealed that significant strain and stress inhomogeneities across the strip thickness are generated in a single DRECE pass. The die design (the inner and outer corner radius) and friction conditions affect the material flow, reducing significantly the shear strain in the near-surface regions of the strip. The strain inhomogeneity can be effectively reduced by choosing the processing route C. The strain distributions and the corresponding tensile test results have confirmed that the smaller channel die angle allows to generate larger strain and higher strength of the strip but also reduces its ductility more than the die setup with the larger channel die angle.
Rocznik
Strony
art. no. e145, 2023
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland
Bibliografia
  • 1. Wang JT. Historic retrospection and present status of severe plastic deformation in China. Mater Sci Forum. 2006;503–504:363–70. https://doi.org/10.4028/www.scientific.net/MSF.503-504.363.
  • 2. Srinivasan S, Ranganathan S. India’s legendary wootz steel: an advanced material of the ancient world. Bangalore: National Insti- tute of Advanced Studies and Indian Institute of Science; 2004.
  • 3. Sherby OD, Wadsworth J. Ancient blacksmiths, the Iron Age, Damascus steels, and modern metallurgy. J Mater Process Technol. 2001;117(3):347–53. https://doi.org/10.1016/S0924-0136(01) 00794-4.
  • 4. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci. 2008;53(6):893–979. https://doi.org/10.1016/j.pmatsci.2008.03. 002.
  • 5. Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51(7):881–981. https://doi.org/10.1016/j.pmatsci.2006. 02.003.
  • 6. Langdon TG. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 2013;61(19):7035–59. https://doi.org/10.1016/j.actamat. 2013.08.018.
  • 7. Bagherpour E, Pardis N, Reihanian M, Ebrahimi R. An overview on severe plastic deformation: research status, techniques clas- sification, microstructure evolution, and applications. Int J Adv Manuf Technol. 2019;100:1647–94. https:// doi. org/ 10. 1007/ s00170-018-2652-z.
  • 8. Segal V. Review: Modes and processes of severe plastic deforma- tion (SPD). Materials. 2018;11(7):1175. https://doi.org/10.3390/ ma11071175.
  • 9. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y. Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM. 2016;68:1216–26. https://doi. org/10.1007/s11837-016-1820-6.
  • 10. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R. Ultrafine grained bulk aluminum produced by accumulative roll bonding (ARB) process. Scr Mater. 1998;39(9):1221–7. https://doi.org/10. 1016/S1359-6462(98)00302-9.
  • 11. Cui Q, Ohori K. Grain refinement of high purity aluminium by asymmetric rolling. Mater Sci Technol. 2000;10:1095–101. https://doi.org/10.1179/026708300101507019.
  • 12. Xu G, Cao X, Zhang T, Duan Y, Peng X, Deng Y, Yin Z. Achiev- ing high strain rate superplasticity of an Al-Mg-Sc-Zr alloy by a new asymmetrical rolling technology. Mater Sci Eng A. 2016;672:98–107. https://doi.org/10.1016/j.msea.2016.06.070.
  • 13. Wierzba A, Mróz S, Szota P, Stefanik A, Mola R. The influence of the asymmetric ARB process on the properties of Al-Mg-Al multi-layer sheets. Arch Metall Mater. 2015;60(4):2821–5. https:// doi.org/10.1515/amm-2015-0450.
  • 14. Mirsepasi A, Nili-Ahmadabadi M, Habibi-Parsa M, Ghasemi Nanesa H, Dizaji AF. Microstructure and mechanical behavior of martensitic steel severely deformed by the novel technique of repetitive corrugation and straightening by rolling. Mater Sci Eng A. 2012;551:32–9. https://doi.org/10.1016/j.msea.2012.04.073.
  • 15. Shin DH, Park J-J, Kim Y-S, Park K-T. Constrained groove press- ing and its application to grain refinement of aluminum. Mater Sci Eng A. 2002;328(1–2):98–103. https://doi.org/10.1016/S0921- 5093(01)01665-3.
  • 16. Saray O, Purcek G, Karaman I, Neindorf T, Maier HJ. Equal- channel angular sheet extrusion of interstitial-free (IF) steel: microstructural evolution and mechanical properties. Mater Sci Eng A. 2011;528(21):6573–83. https://doi.org/10.1016/j.msea. 2011.05.014.
  • 17. Utsunomiya H, Hatsuda K, Sakai T, Saito Y. Continuous grain refinement of aluminum strip by conshearing. Mater Sci Eng A. 2004;372(1–2):199–206. https://doi.org/10.1016/j.msea.2003.12. 014.
  • 18. Han JH, Seok HK, Chung YH, Shin MC, Lee JC. Texture evolu- tion of the strip cast 1050 Al alloy processed by continuous con- fined strip shearing and its formability evaluation. Mater Sci Eng A. 2002;323(102):342–7. https://doi.org/10.1016/S0921-5093(01) 01389-2.
  • 19. Rusz S, Cizek L, Michenka V, Dutkiewicz J, Salajka M, Hilsner O, Tylsar S, Kedron J, Klos M. New type of device for achievement of grain refinement in metal strip. Adv Mater Res. 2015;1127:91– 7. https://doi.org/10.4028/www.scientific.net/AMR.1127.91.
  • 20. Rusz S, Kłyszewski A, Salajka M, Hilser O, Cizek L, Klos M. Possibilities of application methods DRECE in forming of non –ferrous metals. Arch Metall Mater. 2015;60:3011–6. https://doi. org/10.1515/amm-2015-0481.
  • 21. Rusz S, Salajka M, Hilser O, Dutkiewicz J, Boruta J, Svec J. Influ- ence of the forming tool parameters on the grain refinement of brass by SPD process. Metal Form. 2017;27(4):301–14.
  • 22. Jabłońska MB, Kowalczyk K, Tkocz M, Chulist R, Rodak K, Bednarczyk I, Cichański A. The effect of severe plastic defor- mation on the IF steel properties, evolution of structure and crystallographic texture after dual rolls equal channel extrusion deformation. Arch Civ Mech Eng. 2021;21:153. https://doi.org/ 10.1007/s43452-021-00303-6.
  • 23. Kowalczyk K, Jabłońska MB, Tkocz M, Chulist R, Bednarczyk I, Rzychoń T. Effect of the number of passes on grain refinement, texture and properties of DC01 steel strip processed by the novel hybrid SPD method. Arch Civil Mech Eng. 2022;22:115. https:// doi.org/10.1007/s43452-022-00432-6.
  • 24. Yoon SC, Quang P, Hong SI, Kim HS. Die design for homogene- ous plastic deformation during equal channel angular pressing. J Mater Process Technol. 2007;187–188:46–50. https://doi.org/10. 1016/j.jmatprotec.2006.11.117.
  • 25. Sordi VL, Mendes Filho AA, Valio GT, Springer P, Rubert JB, Ferrante M. Equal-channel angular pressing: influence of die design on pressure forces, strain homogeneity, and corner gap formation. J Mater Sci. 2016;51:2380–93. https://doi.org/10.1007/ s10853-015-9547-2.
  • 26. Pesin A, Pustovoytov D, Shveyova T, Vafin R. Finite element simulation and comparison of a shear strain and equivalent strain during ECAP and asymmetric rolling. IOP Conf Ser Mater Sci Eng. 2017;293:012007. https://doi.org/10.1088/1757-899X/293/1/ 012007.
  • 27. Rahimi F, Sadeghi B, Ahmadi M. Finite element analysis of the deformation behaviour of pure aluminium in repetitive corruga- tion-straightening and constrained groove pressing. Int J Manuf Technol Manag. 2018;32(6):598–609. https://doi.org/10.1504/ IJMTM.2018.095038.
  • 28. Jabłońska MB, Kowalczyk K, Tkocz M, Bulzak T, Bednarczyk I, Rusz S. Dual rolls equal channel extrusion as unconventional SPD process of the ultralow-carbon steel: finite element simu- lation, experimental investigations and microstructure analy- sis. Arch Civil Mech Eng. 2021;21:25. https://doi.org/10.1007/ s43452-020-00166-3.
  • 29. Tong LB, Zheng MY, Hu XS, Wu K, Xu SW, Kamado S, Kojima Y. Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A. 2010;527(16– 17):4250–6. https://doi.org/10.1016/j.msea.2010.03.062.
  • 30. Arentoft M, Gronostajski Z, Niechajowicz A, Wanheim T. Physi- cal and mathematical modelling of extrusion processes. J Mater Process Tech. 2000;106(1–3):2–7. https://doi.org/10.1016/S0924- 0136(00)00629-4.
  • 31. Li S, Bourke MAM, Beyerlein IJ, Alexander DJ, Clausen B. Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion. Mater Sci Eng A. 2004;382(1– 2):217–36. https://doi.org/10.1016/j.msea.2004.04.067.
  • 32. Beyerlein IJ, Li S, Necker CT, Alexander DJ, Tome CN. Non- uniform microstructure and texture evolution during equal channel angular extrusion. Philos Mag. 2005;85(13):1359–94. https://doi. org/10.1080/09500830500040940.
  • 33. Skrotzki W. Deformation heterogeneities in equal channel angu- lar pressing. Mater Trans. 2019;60(7):1331–43. https://doi.org/ 10.2320/matertrans.MF201926.
  • 34. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater. 1996;35(2):143–6. https://doi.org/ 10.1016/1359-6462(96)00107-8.
  • 35. Luis Pérez CJ. On the correct selection of the channel die in ECAP processes. Scr Mater. 2004;50(3):387–93. https://doi.org/ 10.1016/j.scriptamat.2003.10.007.
Uwagi
EN
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81e50d4-ef16-41b8-9fe3-d74d26be3b69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.