PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nowy sposób odzyskiwania ciepła z procesu sprężania powietrza

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
A New Way to Recover Heat From an Air Compression Process
Języki publikacji
PL
Abstrakty
PL
W artykule opisano nową metodę odzyskiwania ciepła z procesu sprężania powietrza. W metodzie wykorzystano odwrócony obieg Braytona dotychczas stosowany głównie do chłodzenia kabin samolotów pasażerskich lub dochładzania LNG. Na potrzeby analizy opracowano model numeryczny obiegu w programie IPSEpro, który posłużył do wykonania obliczeń wariantowych. Na podstawie wyników obliczeń zaprojektowano stanowisko do badań turbosprężarki powietrza. Obliczenia numeryczne i wyniki badań wykonanych na stanowisku laboratoryjnym potwierdziły możliwość zastosowania odwróconego obiegu Braytona w systemach ogrzewania i chłodzenia budynków.
EN
The paper presents a new method of heat recovery from the process of air compression. The inverted Brayton cycle, previously used mainly for cooling passenger aircraft cabins or LNG sub- cooling, has been applied. For the purposes of the analysis, a numerical model of the circulation was developed in the IPSEpro program, which was used to perform variant calculations. These calculations were used to design a test stand based on a turbo- charger. Numerical calculations and laboratory tests confirmed the possibility of using the reverse Brayton cycle in building heating and cooling systems.
Rocznik
Strony
6--12
Opis fizyczny
Bibliogr. 22 poz., rys., tab., zdj.
Twórcy
  • AGH, Akademia Górniczo-Hutnicza, Wydział Energetyki i Paliw, Katedra Maszyn Cieplnych i Przepływowych
  • AGH, Akademia Górniczo-Hutnicza, Wydział Inżynierii Metali i Informatyki Przemysłowej, Katedra Techniki Cieplnej i Ochrony Środowiska
  • Wytwórnia Urządzeń Chłodniczych „PZL-Dębica” S.A.
  • AGH, Akademia Górniczo-Hutnicza, Wydział Energetyki i Paliw, Katedra Maszyn Cieplnych i Przepływowych
  • Wytwórnia Urządzeń Chłodniczych „PZL-Dębica” S.A.
Bibliografia
  • [1] Ahmad, Tanveer, i Dongdong Zhang. 2020. “A critical review of comparative global historical energy consumption and future demand: The story told so far”. Energy Reports 6 (listopad 2020): 1973¬91. https://doi.org/10.1016/j.egyr.2020.07.020.
  • [2] Balmer, Robert T. 2011. Modern Engineering Thermodynamics. Burlington: Academic Press is an imprint of Elsevier, 2011.
  • [3] Bi, Yujing, i Yonglin Ju. 2022. “Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization”. Energy, kwiecień 2022, 124047. https://doi.org/10.1016/j.energy.2022.124047.
  • [4] Bijalwan, Ashutosh, i A. Pratihar. 2015. “Thermodynamic study on the performance of an aircraft bootstrap system”. W All India Seminar on Advances in Engineering and Technology for Sustainable Development. Pantnagar, 2015.
  • [5] BP statistical review of World Energy 2021–71st edition. Retrieved from https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html.
  • [6] Carroll, P., M. Chesser i P. Lyons. 2020. “Air Source Heat Pumps field studies: A systematic literature review”. Renewable and Sustainable Energy Reviews 134 (grudzień 2020): 110275. https://doi.org/10.1016/j.rser.2020.110275.
  • [7] Chaudhry, Hassam Nasarullah, Ben Richard Hughesi Saud Abdul Ghani. 2012. “A review of heat pipe systems for heat recovery and renewable energy applications”. Renewable and Sustainable Energy Reviews 16, nr 4 (maj 2012): 2249–59. https://doi.org/10.1016/j.rser.2012.01.038.
  • [8] Congedo, Paolo Maria, Cristina Baglivo, Sara Bonuso i Delia D’Agostino. 2020. “Numerical and experimental analysis of the energy performance of an air-source heat pump (ASHP) coupled with a horizontal earth-to-air heat exchanger (EAHX) in different climates”. Geothermics 87 (wrzesień 2020): 101845. https://doi.org/10.1016/j.geothermics.2020.101845.
  • [9] Dhillon, A. K., i P. Ghosh. 2019. “Thermodynamic analysis of reverse Brayton cycle based cryocoolers for cooling HTS cables”. IOP Conference Series: Materials Science and Engineering 502 (15.04.2019): 012029. https://doi.org/10.1088/1757-899x/502/1/012029.
  • [10] Dong, Kangyin, Xiucheng Dong i Qingzhe Jiang. 2019. “How renewable energy consumption lower global CO 2 emissions? Evidence from countries with different income levels”. World Economy 43, nr 6 (25.11.2019): 1665–98. https://doi.org/10.1111/twec.12898.
  • [11] Fehrm, Mats, Wilhelm Reiners i Matthias Ungemach. 2002. “Exhaust air heat recovery in buildings”. International Journal of Refrigeration 25, nr 4 (czerwiec 2002): 439–49. https://doi.org/10.1016/s0140-7007(01)00035-4.
  • [12] Korpela, Seppo A. Principles of Turbomachinery. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. https://doi.org/10.1002/9781118162477.
  • [13] Mardiana-Idayu, A., i S. B. Riffat. 2012. “Review on heat recovery technologies for building applications”. Renewable and Sustainable Energy Reviews 16, nr 2 (luty 2012): 1241–55. https://doi.org/10.1016/j.rser.2011.09.026.
  • [14] Mustafa Omer, Abdeen. 2008. “Ground-source heat pumps systems and applications”. Renewable and Sustainable Energy Reviews 12, nr 2 (luty 2008): 344–71. https://doi.org/10.1016/j.rser.2006.10.003.
  • [15] Saghafifar, Mohammad, Amr Omar, Kasra Mohammadi, Adnan Alashkar i Mohamed Gadalla. 2019.”A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization”. Energy Conversion and Management 198 (październik 2019): 110905. https://doi.org/10.1016/j.enconman.2018.10.
  • [16] Smith, Kevin Michael, i Svend Svendsen. 2015. “Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments”. Energy and Buildings 107 (listopad 2015): 1–10. https://doi.org/10.1016/j.enbuild.2015.07.061.
  • [17] Wang, Xinru, Liang Xia, Chris Bales, Xingxing Zhang, Benedetta Copertaro, Song Pan i Jinshun Wu. “A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources”. Renewable Energy 146 (luty 2020): 2472–87. https://doi.org/10.1016/j.renene.2019.08.096.
  • [18] White, A. J. 2009. “Thermodynamic analysis of the reverse Joule–Brayton cycle heat pump for domestic heating”. Applied Energy 86, nr 11 (listopad 2009): 2443–50. https://doi.org/10.1016/j.apenergy.2009.02.012.
  • [19] World Energy Outlook 2021. Retrieved from https://www.iea.org/reports/world-energy-outlook-2021.
  • [20] Xu, Jingxuan, i Wensheng Lin. “Integrated hydrogen liquefaction processes with LNG production by two stage helium reverse Brayton cycles taking industrial by products as feedstock gas”. Energy 227 (li- piec 2021): 120443. https://doi.org/10.1016/j.energy.2021.120443.
  • [21] Xu, Qi, Saffa Riffat i Shihao Zhang. 2019. “Review of Heat Recovery Technologies for Building Applications”. Energies 12, nr 7 (3.04.2019): 1285. https://doi.org/10.3390/en12071285.
  • [22] Zhao, Hongli, Yu Hou, Yongfeng Zhu, Liang Chen i Shuangtao Chen. 2009. “Experimental study on the performance of an aircraft environmental control system”. Applied Thermal Engineering 29, nr 16 (listopad 2009): 3284–88. https://doi.org/10.1016/j.applthermaleng.2009.05.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81d58a6-9e33-4060-a6f1-6dbdebaf2427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.