Identyfikatory
Warianty tytułu
The role of the support and/or modifiers in shaping the properties of gold catalysts applied to oxidation processes
Języki publikacji
Abstrakty
Since the ground-breaking discoveries of Haruta and Hutchings in the 1980s, heterogeneous gold-based catalysts have attracted significant attention due to their outstanding performance in various oxidation reactions under relatively mild conditions. Their catalytic properties, including activity, selectivity, and stability, are strongly influenced by the size, dispersion, morphology, and electronic state of Au nanoparticles, which are in turn governed by the choice of support and the presence of modifiers. Supports play a crucial role not only in stabilizing and dispersing gold nanoparticles but also in shaping metal−support interactions and providing additional active sites (e.g., acidic or basic sites). Modifiers - such as additional metals, nonmetals, or oxoanions - can further tune the electronic and structural properties of gold phase, surface acidity or basicity, and long-term stability. This work provides a comprehensive overview of scientific studies highlighting the role of supports and modifiers in shaping the performance of heterogeneous gold catalysts in oxidation processes.
Wydawca
Czasopismo
Rocznik
Tom
Strony
943--975
Opis fizyczny
Bibliogr. 114 poz., rys., wykr.
Twórcy
autor
- Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Boulevard Maréchal Juin, 14050 Caen, France
Bibliografia
- [1] M. Ziolek, I. Nowak, Kataliza Heterogeniczna - Wybrane Zagadnienia, Wydawnictwo Naukowe UAM, Poznań, 1999.
- [2] B. Grzybowska-Świerkosz, Elementy Katalizy Heterogenicznej, Wydawnictwo Naukowe PWN, Warszawa, 1993.
- [3] I. Chorkendorff;, J. Niemantsverdriet;, Concepts of Modern Catalysis and Kinetics, 3rd Edition, Wiley-VCH, 2013.
- [4] A. Stokłosa, Wprowadzenie Do Chemii Fizycznej, t. III, wyd. FOSZE, Rzeszów, 2020.
- [5] B. Srikanth, R. Goutham, R. Badri Narayan, A. Ramprasath, K.P. Gopinath, A.R. Sankaranarayanan, Journal of Environmental Management, 2017, 200, 60.
- [6] N. Yang, S.F. Bent, Journal of Catalysis, 2017, 351, 49.
- [7] L. Wolski, I. Sobczak, M. Ziolek, Journal of Catalysis, 2017, 354, 100.
- [8] J. Du, H. Li, C. Wang, A. Zhang, Y. Zhao, Y. Luo, Catalysis Communications, 2020, 141, 106012.
- [9] P. Liang, L. Wang, Q. Wang, B. Zhao, Y. Li, Y. Ma, Y. Wei, T. Sun, Journal of Environmental Chemical Engineering, 2023, 11, 109569.
- [10] I. Sobczak, M. Rydz, M. Ziolek, Materials Research Bulletin, 2013, 48, 795.
- [11] X. Chen, Y. Zheng, F. Huang, Y. Xiao, G. Cai, Y. Zhang, Y. Zheng, L. Jiang, ACS Catal., 2018, 8, 11016.
- [12] M. Ziolek, I. Sobczak, Catalysis Today, 2017, 285, 211.
- [13] A. Wojtaszek-Gurdak, M. Zielinska, M. Ziolek, Catalysis Today, 2019, 325, 89.
- [14] B. Dou, G. Lv, C. Wang, Q. Hao, K. Hui, Chemical Engineering Journal, 2015, 270, 549.
- [15] I. Sobczak, M. Kozlowska, M. Ziolek, Journal of Molecular Catalysis A: Chemical, 2014, 390, 114.
- [16] C. Qi, H. Su, R. Guan, X. Xu, J. Phys. Chem. C, 2012, 116, 17492.
- [17] M. Haruta, Journal of Catalysis, 1989, 115, 301.
- [18] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chemistry Letters, 1987, 16, 405.
- [19] G. Hutchings, Journal of Catalysis, 1985, 96, 292.
- [20] H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido, K. Asakura, Y. Iwasawa, Journal of Catalysis, 1999, 185, 252.
- [21] M. Haruta, B.S. Uphade, S. Tsubota, A. Miyamoto, Res. Chem. Intermed., 1998, 24, 329.
- [22] M. Haruta, A. Ueda, S. Tsubota, R.M. Torres Sanchez, Catalysis Today, 1996, 29, 443.
- [23] L. Prati, M. Rossi, Journal of Catalysis, 1998, 176, 552.
- [24] L. Prati, G. Martra, Gold Bull, 1999, 32, 96.
- [25] X. Qi, Y. He, Y. Yao, Y. Li, L. Zhang, M. Geng, H. Wei, H. Chu, Catal. Sci. Technol., 2022, 12, 1313.
- [26] J. Wisniewska, I. Sobczak, M. Pietrowski, H. Wywrocka, M. Mazur, L. Wolski, ChemCatChem, 2025, e00867.
- [27] J. Wisniewska, I. Sobczak, M. Ziolek, Chemical Engineering Journal, 2021, 413, 127548.
- [28] A. Bueno, N. Viar, M.B. Conway, I. Gandarias, J.M. Requies, M. Sankar, Fuel, 2026, 403, 136088.
- [29] W. Sun, T. Gao, G. Zhu, Q. Cao, W. Fang, ChemistrySelect, 2020, 5, 1416.
- [30] R. Palacio, Á.A. Amaya, D. Blach, S. Torres, D. Hernández, D. López, F. Martinez, ChemistrySelect, 2020, 5, 7789.
- [31] E. Pakrieva, E. Kolobova, D. German, M. Stucchi, A. Villa, L. Prati, Sónia.A.C. Carabineiro, N. Bogdanchikova, V. Cortés Corberán, A. Pestryakov, Processes, 2020, 8, 1016.
- [32] I. Sobczak, Ł. Wolski, Catalysis Today, 2015, 254, 72.
- [33] P. Johnston, N. Carthey, G.J. Hutchings, J. Am. Chem. Soc., 2015, 137, 14548.
- [34] G.J. Hutchings, Journal of Catalysis, 2024, 432, 115392.
- [35] J. García-Serna, R. Piñero-Hernanz, D. Durán-Martín, Catalysis Today, 2022, 387, 237.
- [36] G.D. Yadav, R.K. Mewada, D.P. Wagh, H.G. Manyar, Catalysis Science and Technology, 2022, 72, 7245.
- [37] Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, Y. Yang, Chemical Society Reviews, 2014, 43, 3480.
- [38] S. Valange, J.C. Védrine, Catalysts, 2018, 8.
- [39] P. Anastas, N. Eghbali, Chem. Soc. Rev., 2010, 39, 301.
- [40] T. Ishida, T. Murayama, A. Taketoshi, M. Haruta, Chemical Reviews, 2020, 120, 464.
- [41] A.S. Sharma, H. Kaur, D. Shah, RSC Advances, 2016, 6, 28688.
- [42] A.S. Alshammari, Catalysts, 2019, 9, 402.
- [43] X. Zhang, K. Wilson, A.F. Lee, Chemical Reviews, 2016, 116, 12328.
- [44] A. Villa, D. Wang, D.S. Su, L. Prati, Catal. Sci. Technol., 2015, 5, 55.
- [45] G.J. Hutchings, ACS Cent. Sci., 2018, 4, 1095.
- [46] T. Ishida, A. Taketoshi, M. Haruta, in: S. Kobayashi (Ed.), Nanoparticles in Catalysis, Springer International Publishing, Cham, 2020, pp. 1-48.
- [47] A.S. Sharma, H. Kaur, D. Shah, RSC Adv., 2016, 6, 28688.
- [48] X.Y. Liu, A. Wang, T. Zhang, C.Y. Mou, Nano Today, 2013, 8, 403.
- [49] L. Wolski, I. Sobczak, M. Ziolek, Journal of Catalysis, 2017, 354, 100.
- [50] M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely, G.J. Hutchings, Chem. Rev., 2020, 120, 3890.
- [51] L. Wolski, A. Walkowiak, M. Ziolek, Catalysis Today, 2019, 333, 54.
- [52] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, Journal of Catalysis, 2001, 197, 113.
- [53] D. Widmann, R.J. Behm, Angewandte Chemie International Edition, 2011, 50, 10241.
- [54] H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido, K. Asakura, Y. Iwasawa, Journal of Catalysis, 1999, 185, 252.
- [55] L. Wolski, I. Sobczak, M. Ziolek, Microporous and Mesoporous Materials, 2017, 243, 339.
- [56] X. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S.D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, T.-S. Lin, J. Am. Chem. Soc., 2012, 134, 10251.
- [57] Q. Fu, T. Wagner, Surface Science Reports, 2007, 62, 431.
- [58] D.W. Goodman, Catal Lett, 2005, 99, 1.
- [59] X.Y. Liu, A. Wang, T. Zhang, C.-Y. Mou, Nano Today, 2013, 8, 403.
- [60] H. Tang, J. Wei, F. Liu, B. Qiao, X. Pan, L. Li, J. Liu, J. Wang, T. Zhang, J. Am. Chem. Soc., 2016, 138, 56.
- [61] A. Nakayama, R. Sodenaga, Y. Gangarajula, A. Taketoshi, T. Murayama, T. Honma, N. Sakaguchi, T. Shimada, S. Takagi, M. Haruta, B. Qiao, J. Wang, T. Ishida, Journal of Catalysis, 2022, 410, 194.
- [62] J. Liu, L. Chen, X. Liu, ACS Catalysis, 2024, 14, 1987.
- [63] T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Nature Catalysis, 2019, 2, 955.
- [64] A. Corma, H. Garcia, Chem. Soc. Rev., 2008, 37, 2096.
- [65] C. Galeano, R. Güttel, M. Paul, P. Arnal, A. Lu, F. Schüth, Chemistry A European J, 2011, 17, 8434.
- [66] T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, M. Haruta, Journal of Colloid and Interface Science, 2008, 323, 105.
- [67] A. Buonerba, P. Canton, C. Capacchione, A. Grassi, Eur J Inorg Chem, 2022, 2022, e202200466.
- [68] H.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, J. Am. Chem. Soc., 2009, 131, 11302.
- [69] H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, J. Phys. Chem. C, 2010, 114, 13362.
- [70] L. Jiang, F. Chen, H. An, G. Su, Z. Huang, K. Chen, J. Ren, J. Gao, Applied Catalysis B: Environment and Energy, 2025, 378, 125534.
- [71] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, Journal of Catalysis, 1989, 115, 301.
- [72] P. Sudarsanam, B. Mallesham, D.N. Durgasri, B.M. Reddy, Journal of Industrial and Engineering Chemistry, 2014, 20, 3115.
- [73] E. Smolentseva, V. V. Costa, R.F. Cotta, O. Simakova, S. Beloshapkin, E. V. Gusevskaya, A. Simakov, ChemCatChem, 2015, 7, 1011.
- [74] B. Donoeva, N. Masoud, P.E. De Jongh, ACS Catal., 2017, 7, 4581.
- [75] J. Wang, X. Gu, L. Pei, P. Kong, J. Zhang, X. Wang, R. Wang, E.R. Waclawik, Z. Zheng, Applied Catalysis B: Environmental, 2021, 283, 119618.
- [76] S. Mitchell, J. Pérez-Ramírez, Nat Commun, 2020, 11, 4302.
- [77] C. Tian, H. Zhang, X. Zhu, B. Lin, X. Liu, H. Chen, Y. Zhang, D.R. Mullins, C.W. Abney, M. Shakouri, R. Chernikov, Y. Hu, F. Polo-Garzon, Z. Wu, V. Fung, D. Jiang, X. Liu, M. Chi, J. Liu Jimmy, S. Dai, Applied Catalysis B: Environmental, 2020, 261, 118178.
- [78] B. Qiao, J.-X. Liang, A. Wang, C.-Q. Xu, J. Li, T. Zhang, J.J. Liu, Nano Res., 2015, 8, 2913.
- [79] C. Mochizuki, Y. Inomata, S. Yasumura, M. Lin, A. Taketoshi, T. Honma, N. Sakaguchi, M. Haruta, K. Shimizu, T. Ishida, T. Murayama, ACS Catal., 2022, 12, 6149.
- [80] A. Nakayama, A. Yoshida, C. Aono, T. Honma, N. Sakaguchi, A. Taketoshi, T. Fujita, T. Murayama, T. Shimada, S. Takagi, T. Ishida, ChemPlusChem, 2025, 90, e202400465.
- [81] K. Morawa Eblagon, M.F.R. Pereira, J.L. Figueiredo, Catalysis Today, 2018, 301, 55.
- [82] M. Van Der Verren, A. Corrias, V. Vykoukal, A. Styskalik, C. Aprile, D.P. Debecker, Nanoscale, 2024, 16, 7988.
- [83] A. Wojtaszek-Gurdak, I. Sobczak, K. Grzelak, M. Ziolek, U. Hartfelder, J.A. Van Bokhoven, Materials Research Bulletin, 2016, 76, 169.
- [84] J. Wolska, A. Walkowiak, I. Sobczak, L. Wolski, M. Ziolek, Catalysis Today, 2021, 382, 48.
- [85] A. Walkowiak, J. Wolska, A. Wojtaszek-Gurdak, I. Sobczak, L. Wolski, M. Ziolek, Materials, 2021, 14, 5250.
- [86] A. Walkowiak, L. Wolski, M. Ziolek, Molecules, 2020, 25, 5781.
- [87] K.T. Højholt, A.B. Laursen, S. Kegnæs, C.H. Christensen, Topics in Catalysis, 2011, 54, 1026.
- [88] H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, J. Phys. Chem. C, 2010, 114, 13362.
- [89] J.-S. Wang, F.-Z. Jin, H.-C. Ma, X.-B. Li, M.-Y. Liu, J.-L. Kan, G.-J. Chen, Y.-B. Dong, Inorg. Chem., 2016, 55, 6685.
- [90] M. Pander, E. Stachura, M. Kozieł-Szymańska, W. Bury, Chem. Commun., 2025, 10.1039.D5CC04299B.
- [91] V.F. Yusuf, N.I. Malek, S.K. Kailasa, ACS Omega, 2022, 7, 44507.
- [92] Https://Www.Nobelprize.Org/Prizes/Chemistry/2025/Summary/, n.d.
- [93] S. Muhamed, R.K. Aparna, A. Karmakar, S. Kundu, S. Mandal, Inorg. Chem., 2023, 62, 7195.
- [94] S. Goswami, H. Noh, L.R. Redfern, K. Otake, C.-W. Kung, Y. Cui, K.W. Chapman, O.K. Farha, J.T. Hupp, Chem. Mater., 2019, 31, 1485.
- [95] P.-H. Tong, J.-J. Wang, X.-L. Hu, T.D. James, X.-P. He, Chem. Sci., 2023, 14, 7762.
- [96] R. Zanella, V. Rodríguez-González, Y. Arzola, A. Moreno-Rodriguez, ACS Catalysis, 2012, 2, 1.
- [97] S. Carrettin, Y. Hao, V. Aguilar-Guerrero, B.C. Gates, S. Trasobares, J.J. Calvino, A. Corma, Chemistry - A European Journal, 2007, 13, 7771.
- [98] I. Sobczak, M. Rydz, M. Ziolek, Materials Research Bulletin, 2013, 48, 795.
- [99] L. Wolski, Catalysis Today, 2020, 354, 36.
- [100] A. Villa, N. Dimitratos, C.E. Chan-Thaw, C. Hammond, G.M. Veith, D. Wang, M. Manzoli, L. Prati, G.J. Hutchings, Chemical Society Reviews, 2016, 45, 4953.
- [101] T. Wang, X. Yuan, S. Li, L. Zeng, J. Gong, Nanoscale, 2015, 7, 7593.
- [102] J. Wisniewska, I. Sobczak, M. Ziolek, Chemical Engineering Journal, 2021, 413, 127548.
- [103] J. Pinto, A. Weilhard, L.T. Norman, R.W. Lodge, D.M. Rogers, A. Gual, I. Cano, A.N. Khlobystov, P. Licence, J. Alves Fernandes, Catal. Sci. Technol., 2023, 13, 4082.
- [104] Y. Chen, A. Zohaib, H. Sun, S. Sun, Chem. Commun., 2025, 61, 12097.
- [105] H. Kim, T.Y. Yoo, M.S. Bootharaju, J.H. Kim, D.Y. Chung, T. Hyeon, Advanced Science, 2022, 9, 2104054.
- [106] J.W.M. Crawley, I.E. Gow, N. Lawes, I. Kowalec, L. Kabalan, C.R.A. Catlow, A.J. Logsdail, S.H. Taylor, N.F. Dummer, G.J. Hutchings, Chem. Rev., 2022, 122, 6795.
- [107] K.M. Parida, N. Sahu, A.K. Tripathi, V.S. Kamble, Environ. Sci. Technol., 2010, 44, 4155.
- [108] R. Sakthivel, T. Ntho, M. Witcomb, M.S. Scurrell, Catal Lett, 2009, 130, 341.
- [109] Y. Jia, R. Hu, Q. Zhou, H. Wang, X. Gao, J. Zhang, Journal of Catalysis, 2017, 348, 223.
- [110] Z. Ma, S. Brown, S.H. Overbury, S. Dai, Applied Catalysis A: General, 2007, 327, 226.
- [111] K. Shen, B. Gao, H. Xia, W. Deng, J. Yan, X. Guo, Y. Guo, X. Wang, W. Zhan, Q. Dai, Environ. Sci. Technol., 2022, 56, 8854.
- [112] P. Mohapatra, J. Moma, K.M. Parida, W.A. Jordaan, M.S. Scurrell, Chem. Commun., 2007, 1044.
- [113] B. Solsona, M. Conte, Y. Cong, A. Carley, G. Hutchings, Chem. Commun., 2005, 2351.
- [114] A. Walkowiak, L. Wolski, O.I. Lebedev, M. Daturi, M. Ziolek, Journal of Catalysis, 2024, 434, 115504.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81a1ecf-aa36-463c-a00d-3ca8e8771551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.