Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Właściwości pochłaniania fal elektromagnetycznych tkaniny bawełnianej z powłoką z nanorurek węglowych
Języki publikacji
Abstrakty
In order to endow cotton fabric with the electromagnetic shielding property while preserving comfort and softness, carbon nanotubes (CNTs) were coated onto NaOH pretreated fabrics via a binder-free dip-coating approach. Scanning electron microscopy (SEM) and Infrared spectroscopy were utilised to investigate the surface morphology and modification of the CNT functionalised fabrics. The effects of the number of dip-coatings, the concentration of carbon nanotubes, and the impregnation temperature on electrical conductivity, electromagnetic (EM) shielding effectiveness (SE), and wave absorbing efficiency of cotton fabrics were evaluated, respectively. The SE value of the CNT functionalised cotton fabrics increased with the dip-coating time and reached 16.5 dB after CNT dip-coating ten times, which indicates that 97.76% of the electromagnetic wave was shielded. Meanwhile, by adding layers of stacking fabrics, the SE of CNT coated fabrics was further improved to 26.4 dB. The shielding mechanism was also studied by comparing its reflection and absorption behaviour, which demonstrates that 65.7% of the electromagnetic wave was absorbed.
Aby nadać tkaninie bawełnianej właściwości ekranowania elektromagnetycznego przy jednoczesnym zachowaniu komfortu i miękkości, najpierw zastosowano obróbkę tkaniny z zastosowaniem NaOH, a następnie nałożono na nią powłokę z nanorurek węglowych (CNT). Za pomocą skaningowej mikroskopii elektronowej (SEM) i spektroskopii w podczerwieni zbadano morfologię powierzchni tkanin funkcjonalizowanych CNT. Oceniono wpływ liczby powłok zanurzeniowych, stężenia nanorurek węglowych i temperatury impregnacji na przewodność elektryczną, skuteczność ekranowania elektromagnetycznego (EM) (SE) oraz efektywność pochłaniania fal przez tkaniny bawełniane. Stwierdzono, że wartość SE funkcjonalizowanych tkanin bawełnianych CNT wzrastała wraz z czasem powlekania zanurzeniowego i osiągnęła 16.5 dB po dziesięciokrotnym powlekaniu zanurzeniowym CNT, co wskazało, że 97.76% fali elektromagnetycznej było ekranowane. Poprzez dodanie warstw tkanin, współczynnik SE tkanin powlekanych CNT został dodatkowo poprawiony do 26,4 dB. Zbadano również mechanizm ekranowania, porównując jego właściwości odbijania oraz pochłaniania i stwierdzono, że 65.7% fali elektromagnetycznej zostało zaabsorbowane.
Czasopismo
Rocznik
Strony
82--90
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Anhui Polytechnic University, College of Textile & Fashion, Wuhu, Anhui 241000, China
autor
- Donghua University, College of Textile, Shanghai 201620, China
autor
- Anhui Polytechnic University, College of Textile & Fashion, Wuhu, Anhui 241000, China
autor
- Anhui Polytechnic University, College of Textile & Fashion, Wuhu, Anhui 241000, China
autor
- Donghua University, College of Textile, Shanghai 201620, China
autor
- Anhui Polytechnic University, College of Textile & Fashion, Wuhu, Anhui 241000, China
Bibliografia
- 1. Li Y, Xu F, Lin Z, Sun X, Peng Q, Yuan Y, et al. Electrically and Thermally Conductive Underwater Acoustically Absorptive Graphene/Rubber Nanocomposites for Multifunctional Applications [J]. Nanoscale 2017; 9(38): 14476-14485.
- 2. Xie S, Ji ZJ, Shui ZH, Li B, Wang J, Hou GY, et al. Design and Manufacture of a Dual-Functional Exterior Wall Structure for 1.1-5 Ghz Electromagnetic Radiation Absorption [J]. Composite Structures 2018; 201: 608-615.
- 3. Chung DDL. Carbon Materials For Structural Self-Sensing, Electromagnetic Shielding And Thermal Interfacing[J]. Carbon 2012; 50(9): 3342-3353.
- 4. Du L, Zhang HY, Huang YL, Zhang M. Study on Composite Electromagnetic Shielding Coatings With Cnts [J]. Materials Research and Application 2010; 4(4): 414-417.
- 5. Liu Z, Su Y, Pan Z, Li Y, Wang X, Zhou Z. Parameter Description of the Surface Metal Fiber Arrangement of Electromagnetic Shielding Fabric. FIBRES & TEXTILES in Eastern Europe 2017; 25, 2(122): 62-67. DOI: 10.5604/12303666.1228174.
- 6. Xu YD, Yang YQ, Duan HJ, Gao JF, Yan DX, Zhao GZ, et al. Flexible and Highly Conductive Sandwich Nylon/Nickel Film for Ultra-Efficient Electromagnetic Interference Shielding [J]. Applied Surface Science 2018; 455: 856-863.
- 7. Zhang W, Wu CW. Preparation and Application of Flexible Conductive Fabric Based on Sing – Wall Carbon Nanotube[J]. Modern Chemical Industry 2013; 331(12): 39-42.
- 8. Ozen MS, Usta I, Yuksek M, Sancak E, Soin N. Investigation of the Electromagnetic Shielding Effectiveness of Needle Punched Nonwoven Fabrics Produced from Stainless Steel and Carbon Fibres. FIBRES & TEXTILES in Eastern Europe 2018; 26, 1(127): 94-100. DOI: 10.5604/01.3001.0010.5636.
- 9. Shen QL, Li HJ, Lin HJ, Li L, Li W, Song Q. Simultaneously Improving The Mechanical Strength and Electromagnetic Interference Shielding of Carbon/Carbon Composites by Electrophoretic Deposition of Sic Nanowires [J]. Journal of Materials Chemistry C. 2018; 6(22): 5888-5899.
- 10. Peng B, Takai C, Razavi-Khosroshahi H, Salmawy MSE, Fuji M. Effect of Cnts on Morphology and Electromagnetic Properties of Non-Firing Cnts/Silica Composite Ceramics [J]. Advanced Powder Technology 2018; 29(8): 1865-1870.
- 11. Xia QS, Zhang ZC, Liu YJ, Leng JS. Self-Assembly of Cross-Linked Carbon Nanotube Films for Improvement on Mechanical Properties and Conductivity [J]. Materials Letters 2018; 231: 190-193.
- 12. Singh SK, Akhtar MJ, Kar KK. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber [J]. ACS Appl Mater Interfaces 2018; 10(29): 24816-24828.
- 13. Pang ZP, Sun XG, Cheng XY, Cao HH, Wu XY, Fu Q. Preparation and Emi Shielding Performance of Carbon Nanotubes Conductive Paper [J]. Journal of Synthetic Crystals 2014; 43(10): 2635-2645.
- 14. Zou LH, Yao L, Ma Y, Li XP, Sailimujiang S, Qiu YP. Comparison of Polyelectrolyte and Sodium Dodecyl Benzene Sulfonate as Dispersants for Multiwalled Carbon Nanotubes on Cotton Fabrics for Electromagnetic Interference Shielding [J]. Journal of Applied Polymer Science 2014; 131(15): 1-9.
- 15. Hu XL, Tian MW, Pan N, Sun B, Li ZQ, Ma YL, et al. Structure-Tunable Graphene Oxide Fibers Via Microfluidic Spinning Route for Multifunctional Textiles [J]. Carbon 2019; 152: 106-113.
- 16. Hu XL, Tian MW, Xu TL, Sun XT, Sun B, Sun CC, et al. Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear [J]. ACS Nano 2020; 14(1): 559-567.
- 17. Li ZQ, Ma YL, Wang LH, Du XJ, Zhu SF, Zhang XS, et al. Multidimensional Hierarchical Fabric-Based Supercapacitor with Bionic Fiber Microarrays for Smart Wearable Electronic Textiles [J]. ACS Appl Mater Interfaces 2019; 11(49): 46278-46285.
- 18. Sun F, Tian M, Sun X, Xu T, Liu X, Zhu S, et al. Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a Worm-Shaped Graphene Microlayer [J]. Nano Lett 2019; 19(9): 6592-6599.
- 19. Li Z, Tian M, Sun X, Zhao H, Zhu S, Zhang X. Flexible All-Solid Planar Fibrous Cellulose Nonwoven Fabric-Based Supercapacitor via Capillarity-Assisted Graphene/Mno2 Assembly [J]. Journal of Alloys and Compounds 2019; 782: 986-994.
- 20. Lu Y, Tian M, Sun X, Pan N, Chen F, Zhu S, et al. Highly Sensitive Wearable 3D Piezoresistive Pressure Sensors Based on Graphene Coated Isotropic Non-Woven Substrate [J]. Composites Part A: Applied Science and Manufacturing 2019; 117: 202-210.
- 21. Xu Y, Wang J, Hu JP, Tong XC, Zhang MX. Purification of Multi-Walled Carbon Nanotubes and Its Surface Modification [J]. Sciencepaper Online 2010; 5(6): 423-426.
- 22. Ji Y. A Methodological Contrast of Textile Washing Color Fastness Testing [J]. Journal of Jiangsu College of Engineering and Technology 2017; 17(3): 20-23.
- 23. Kaitsuka Y, Goto H. Synthesis of Conductive Cocoon Silk Composites. FIBRES & TEXTILES in Eastern Europe 2017; 25, 1(121): 17-22. DOI: 10.5604/01.3001.0010.1705.
- 24. Jiang LQ, Gao L. Effect of Chemical Treatment on The Dispersion Properties of Carbon Nanotubes [J]. Journal of Inorganic Materials 2003; 18(5): 1135-1138.
- 25. Xu J, Zhou X, Xing ZQ, Tu TM, Wu YR. Flame Retardant Finish of Cotton Fabric with Dimethyl Phosphite Modified Carbon Nanotubes [J]. Dyeing & Finishing 2016; 42(12): 16-21.
- 26. Kim CJ, Choi HD, Suh KS, Yoon HG. Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites [J]. Polym-Korea 2003; 27(3): 201-209.
- 27. Sun YM, Luo SH, Sun HL, Zeng W, Ling CX, Chen DG, et al. Engineering ClosedCell Structure in Lightweight and Flexible Carbon Foam Composite for High-Efficient Electromagnetic Interference Shielding [J]. Carbon 2018;136:299-308.
- 28. Al-Saleh MH. Influence of Conductive Network Structure on the Emi Shielding and Electrical Percolation of Carbon Nanotube/Polymer Nanocomposites[J]. Synthetic Metals 2015; 205: 78-84.
- 29. Wang ZF, Shi XM, Yu ZB, Li GB. Study on Infrared Emittance of Carbon Nanotube Coating [J]. Ordnance Material Science and Engineering 2009; 32(1): 21-23.
- 30. Feng M, Zhang YH, Wang XL. Research on Conductive Properties of Carbon Nano Capsule Filled Electromagnetic Shielding Coatings [J]. SAFETY & EMC 2010; 4: 67-68.
- 31. Cheng YC, Zhao XM, Wang R, Song BT. The Development Status and Shielding Effectiveness of Electromagnetic Shielding Fabric [J]. Light and Textile Industry and Technology 2013; 42(1): 58-60.
- 32. Palanisamy S, Tunakova V, Militky J. Fiber-Based Structures for Electromagnetic Shielding – Comparison of Different Materials and Textile Structures [J]. Textile Research Journal 2017; 88(17): 1992-2012.
- 33. Al-Saleh MH, Sundararaj U. Electromagnetic Interference Shielding Mechanisms of Cnt/Polymer Composites [J]. Carbon 2009; 47(7): 1738-1746.
- 34. Cai YH, Li XM, Dong JH. Properties of Porous Si3N4 Ceramic Electromagnetic Wave Transparent Materials Prepared by Technique Combining Freeze Drying And Oxidation Sintering [J]. Journal of Materials Science: Materials in Electronics 2014; 25(4): 1949-1954.
- 35. Lan CT, Li CL, Hu JY, Yang SG, Qiu YP, Ma Y. High-Loading Carbon Nanotube/Polymer Nanocomposite Fabric Coatings Obtained by Capillarity-Assisted “Excess Assembly” for Electromagnetic Interference Shielding [J]. Advanced Materials Interfaces 2018; 5(13).
- 36. Sisodia N, Parmar MS, Jain S. Effect of Pretreatment on the Smoothness Behaviour of Cotton Fabric. FIBRES & TEXTILES in Eastern Europe 2019; 27, 5(137): 47-52. DOI: 10.5604/01.3001.0013.290.
- 37. Ogulata RT. Air Permeability of Woven Fabrics [J]. Journal of Textile and Apparel, Technology and Management 2006; 5(2): 1-10.
- 38. Zheng G, Juan X. Preparation of Copper Sulfide Deposition on Modified Poly (Ethylene Terephtalate) Fibres with Good Conductivity. FIBRES & TEXTILES in Eastern Europe 2018; 26, 1(127): 25-29. DOI: 10.5604/01.3001.0010.7792.
- 39. Li LQ, Fan T, Hu RM, Liu YP, Lu M. Surface Micro-Dissolution Process for Embedding Carbon Nanotubes on Cotton Fabric as a Conductive Textile [J]. Cellulose 2016; 24(2): 1121-1128.
- 40. Mojtahed F, Shahidi S, Hezavehi E. Influence of Plasma Treatment on cnt Absorption of Cotton Fabric and Its Electrical Conductivity and Antibacterial Activity [J]. Journal of Experimental Nanoscience 2015; 11(3): 215-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81a1020-c7a9-41ac-ba32-1e443289e5e5