PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of ultrasounds in oily wastewater pre-treatment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie dezintegracji ultradźwiękowej do podczyszczania ścieków zaolejonych
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the impact of various methods of oil mixing with wastewater on properties of synthetic municipal wastewater containing edible oil (SMW+0.02% m/v rapeseed oil). The study was carried out in 3L glass, cylindrical reactors to which SMW+0.02% were introduced. Various methods of its mixing with water were applied: mechanical mixing (SMW+0.02%+mixing) and sonication (SMW+0.02%+ultrasounds). The wastewater was sonicated at 35 kHz for 30 min. The constant temperature conditions were maintained during the experiment for each mixing method (15°C, 20°C and 30°C). The analysis of parameters (pH, COD, BOD5 and long chain free fatty acids concentration) of raw wastewater and after 2, 4, 6, 24, 48 and 72 hours of inoculation was performed to determine the effect of mixing method. The most significant changes in wastewater chemical parameters after the introduction of the oil were observed in the case of COD. For SMW+0.02%+ mixing a slow increase in COD within 24 hours of the process was observed. In the case of SMW+0.02%+ultrasounds the increase and the decrease of COD value were observed in reference to the initial value. The changes in acids concentrations observed in reactors with SMW+0.02%+ultrasounds were referred to the ones observed in reactors with SMW+0.02%+mixing but changes were more intense in the first reactor. The use of ultrasounds in pre-treatment of wastewater resulted in the intense appearance of palmitic acid for 6 hours. Regardless of the emulsion formation method (mixing or ultrasounds), the concentration of oleic acid and linoleic acid was reduced. The biggest changes in free fatty acids concentration were observed for palmitic, oleic and linoleic acids after 24 hours.
PL
Celem badań było określenie wpływu sposobu mieszania oleju ze ściekami na właściwości syntetycznych ścieków komunalnych zawierających olej jadalny (SŚK+0,02% w/v oleju rzepakowego). Badania były prowadzone w szklanych reaktorach o objętości 3 litrów, do których wprowadzano ścieki SŚK+0,02%. Zastosowano różne metody mieszania: mechaniczne mieszanie (SŚK+0,02%+mieszanie) oraz dezintegrację ultradźwiękową (SŚK+0,02%+ultradźwięki). Ścieki były poddane dezintegracji ultradźwiękowej z częstotliwością 35 kHz przez 30 minut. Podczas badań utrzymywano stałą temperaturę (15°C, 20°C oraz 30°C). W celu określenia efektywności metody mieszania, ścieki surowe oraz oczyszczone ‒ po 2, 4, 6, 24, 48 i 72 godzinach inkubowania poddano analizie (pH, ChZT, BZT5, zawartości długołańcuchowych kwasów tłuszczowych). Najbardziej istotne zmiany w parametrach ścieków po dodaniu oleju obserwowano dla wskaźnika ChZT. W przypadku ścieków SŚK+0,02%+mieszanie obserwowano powolny wzrost ChZT w ciągu 24 godzin. W przypadku SŚK+0,02%+ultradźwięki stwierdzono wzrost i następnie spadek ChZT. Zmiany stężenia kwasów obserwowane w reaktorach zawierających SŚK+0,02%+ultradźwięki były podobne do zmian w reaktora z SŚK+0,02%+mieszanie, przy czym bardziej intensywne zmiany były w pierwszym przypadku. Zastosowanie dezintegracji ultradźwiękowej do podczyszczania ścieków skutkowało intensywnym pojawieniem się kwasu palmitynowego w pierwszych 6-ciu godzinach. Niezależnie od sposobu mieszania (mechaniczne mieszanie lub dezintegracja ultradźwiękowa) stężenie kwasów oleinowego i linolowego malało. Największe zmiany w stężeniu wolnych kwasów tłuszczowych obserwowano dla kwasów: palmitynowego, oleinowego i linolowego po 24 godzinach.
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
  • Silesian University of Technology, Poland
Bibliografia
  • 1. Adulkar, T.V. & Rathod, V.K. (2014). Ultrasound assisted enzymatic pre-treatment of high fat content dairy wastewater, Ultrasonics Sonochemistry, 21, 3, pp. 1083–1089.
  • 2. Anese, M., Maifreni, M., Bot, F., Bartolomeoli, I. & Nicoli, M.C. (2015). Power ultrasound decontamination of wastewater from fresh-cut lettuce washing for potential water recycling, Innovative Food Science and Emerging Technologies, 32, pp. 121–126.
  • 3. Antoniadis, A., Poulios, I., Nikolakaki, E. & Mantzavinos, D. (2007). Sonochemical disinfection of municipal wastewater, Journal of Hazardous Materials, 146, 3, pp. 492–495.
  • 4. Bogacki, P., Marcinowski, P., Naumczyk, J. & Wiliński, P. (2017). Cosmetic wastewater treatment using dissolved air flotation, Archives of Environmental Protection, 43, 2, pp. 65–73.
  • 5. Bonyadi, Z., Dehghan, A.A. & Sadeghi, A. (2012). Determination of sonochemical technology efficiency for cyanide removal from aqueous solutions, World Applied Sciences Journal, 18, 3, pp. 425–429.
  • 6. Chemat, F., Grondin, I., Costes, P., Moutoussamy, L., Shum Cheong Sing, A. & Smadja, J. (2004). High power ultrasound effects on lipid oxidation of refined sunflower oil, Ultrasonics Sonochemistry, 11, 5, pp. 281–285.
  • 7. Chemat, F., Zill-e-Huma, & Khan, M.K. (2011). Application of ultrasound in food technology: Processing, preservation and extraction, Ultrasonics Sonochemistry, 18, 4, pp. 813–835.
  • 8. Cichosz, G. & Czechot, H. (2011). Oxidative stability of edible fats o consequences to human health, Bromatologia i Chemia Toksykologiczna, 44, pp. 50–60. (in Polish)
  • 9. Fernández-Cegrí, V., de la Rubia, M.A., Raposo, F. & Borja, R. (2012). Impact of ultrasonic pretreatment under different operational conditions on the mesophilic anaerobic digestion of sunflower oil cake in batch mode, Ultrasonics Sonochemistry, 19, 5, pp. 1003–1010.
  • 10. Grosser, A., Kamizela, T. & Neczaj, E. (2009). Treatment of wastewater from the fibreboard production enhanced with ultrasound sonification in the SBR Reactor, Inżynieria i Ochrona Środowiska, 12, pp. 295–305. (in Polish)
  • 11. Jamaly, S., Giwa, A. & Hasan, S.W. (2015). Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities, Journal of Environmental Science, 37, pp. 15–30.
  • 12. Jiang, X., Chang, M., Wamg, X., Jin, Q. & Wang, X. (2014). Effect of ultrasound treatment on oil recovery from soybean gum by using phospholipase C, Journal of Cleaner Production, 69, pp. 237–242.
  • 13. Khoufi, S., Aloui, F. & Sayadi, S. (2008). Extraction of antioxidants from olive oil mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion, Journal of Hazardous Materials, 151, 2–3, pp. 531–539.
  • 14. Konratowicz-Pietruszka, E. (2013). Changes in the quality of vegetable oils stored in refrigeration, Zeszyty Naukowe UEK, 912, pp. 49–72. (in Polish)
  • 15. Kwarciak-Kozłowska, A. & Krzywicka, A. (2015). Effect of ultrasonic field to increase the biodegradability of coke processing wastewater, Archives of Waste Management and Environmental Protection, 17, pp. 133–142.
  • 16. Li, Y., Hsieh, W-P., Mahmudov, R., Wei, X. & Huang, C.P. (2013). Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater, Journal of Hazardous Materials, 244–245, pp. 403–411.
  • 17. Liu, Y., Li, X., Kang, X., Yuan, Y. & Du, M. (2014). Short chair fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process : Effect of alkaline adjustment, International Biodeterioration & Biodegradation, 94, pp. 128–133.
  • 18. Liu, Y., Li, X., Kang, X., Yuan, Y., Jiao, M., Zhan, J. & Du, M. (2015). Effect of extracellular polymeric substances disintegration by ultrasonic pretreatment on waste activated sludge acidification, International Biodeterioration & Biodegradation, 102, pp. 131–136.
  • 19. Łobos-Moysa, E., Dudziak, M. & Bodzek, M. (2010). Effect of fatty acids and sterols on the efficiency of wastewater treatment by the activated sludge process in a batch system, Ochrona Środowiska, 32, 2, pp. 53–56. (in Polish)
  • 20. Łobos-Moysa, E. & Dudziak, M. (2011). The application of GC-MS methods for determination of fatty acids concentration in wastewater containing edible oil, Inżynieria i Ochrona Środowiska, 14, 3, pp. 275–280. (in Polish)
  • 21. Nasseri, S., Vaezi, F., Mahvi, A.H., Nabizadeh, R. & Haddadi, S. (2006). Determination of the ultrasonic effectiveness in advanced wastewater treatment, Iranian Journal of Environmental Health & Science Engineering, 3, 2, pp. 109–116.
  • 22. Oz, N.A. & Uzun, A.C. (2015). Ultrasound pretreatment for enhanced biogas production from olive mill wastewater, Ultrasonics Sonochemistry, 22, pp. 565–572.
  • 23. Parkitna, K., Kowalczyk, M. & Krzemińska, D. (2013). Change of ultrasound energy amount put into sewage sludge depending on their content of dry mass, Annual Set The Environment Protection, 15, pp. 2039–2053. (in Polish)
  • 24. PN-EN ISO 11733. Water quality – the determination of elimination and biodegradation of organic compounds in water environment. The simulation test with activated sludge. (in Polish)
  • 25. Rokhina, E.V., Lens, P. & Virkutyte, J. (2009). Low-frequency ultrasounds in biotechnology: state of the art, Trends in Biotechnology, 27, 5, pp. 298–306.
  • 26. Ramteke, L.P. & Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasounds based processes, Journal of Industrial and Engineering Chemistry, 28, pp. 247–260.
  • 27. Su, D., Xiao, T., Gu, D., Cao, Y., Jin, Y., Zhang, W. & Wu, T. (2013). Ultrasonic bleaching of rapeseed oil: Effects of bleaching conditions and underlying mechanisms, Journal of Food Engineering, 117, 1, pp. 8–13.
  • 28. Tano-Debrah, K., Fukuyama, S., Otonari, N., Taniguchi, F. & Ogura, M. (1999). An inoculum for the aerobic treatment of wastewaters with high concentrations of fats and oil, Bioresource Technology, 69, 2, pp. 133–139.
  • 29. Tytła, M. & Zielewicz, E. (2016). The effect of ultrasonic disintegration process conditions on the physicochemical characteristics, Archives of Environmental Protection, 42, 1, pp. 19–26.
  • 30. Wang, Ch. & Liu, Ch. (2014). Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process, Journal of Environmental Sciences, 26, pp. 1332–1339.
  • 31. Wroniak, M., Rękas, A. & Piekarniak, I. (2015). Effect of packaging type and storage condition on selected quality properties of cold-pressed rapeseed oil, Żywność: nauka – technologia – jakość, 99, pp. 62–78. (in Polish)
  • 32. Yan, Y., Feng, L., Zhang, Ch., Wisniewski, Ch. & Zhou, Q. (2010). Ultrasonic Enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0, Water Research, 44, 11, pp. 3329–3336.
  • 33. Zawieja, I., Wolny, L. & Wolski, P. (2009). The impact of Ultrasonic Hydrolysis on the VFA Generation in the acid fermentation of excess sludge, Inżynieria i Ochrona Środowiska, 12, 3, pp. 207–217. (in Polish)
  • 34. Zhuo, G., Yan, Y., Tan, X., Dai, X. & Zhou, Q. (2012). Ultrasonic-pretreated activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature, Journal of Biotechnology, 159, 1–2, pp. 27–31.
  • 35. Zielewicz, E. (2007). Ultrasonic disintegration of excess sludge to produce volatile fatty acids, Wydawnictwo Politechniki Śląskiej, Gliwice 2007. (in Polish)
  • 36. Zielewicz-Madej, E. & Sorys, P. (2007). The comparison of ultrasonic disintegration in laboratory and technical scale disintegrators, Molecular and Quantum Acoustics, 28, pp. 309– 317.
  • 37. Zielewicz, E. & Tytła, M. (2015) Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different constructions, Environmental Technology, 36, 17, pp. 2210–2216.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81554f6-14b9-4348-8ba3-830eef5317d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.