PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of rational design values for gas-air coolers components of exhaust gases of marine power plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modernisation of marine power plants in the transport vessel fleet to satisfy the requirements of the International Maritime Organization is an urgent scientific and technical problem. Currently, the use of catalytic selective filters, dry and wet scrubber systems and exhaust gas recirculation for marine diesel engines is widely used for this purpose. An analysis of the use of ejection gas-air coolers is presented as an additional method of emission reduction. However, the use of such device does not neutralise the harmful emissions of power plant engines, but only increases the volume concentration of their exhaust gases. But this will help to increase the efficiency of dispersion of harmful emissions, by reducing the concentration of harmful emissions to values not exceeding the maximum permissible concentrations. Its efficiency depends on the load mode of the diesel engine. It is found that the initial concentration of harmful substances in combustion products due to their dilution with fresh air at 100% engine load is reduced by about 50%. The values of the reduction of the concentration and temperature of exhaust gases with the reduction of the engine load to 75% and 50% depending on the louvre angle are obtained. It is proved that ejection gas-air coolers can be an effective additional means for compliance with modern environmental parameters, especially when vessels are in special areas of the world’s oceans.
Rocznik
Tom
Strony
81--88
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
  • State Research Design & Shipbuilding Centre, Mykolaiv, Ukraine
Bibliografia
  • 1. United Nations Conference on Trade and Development. “Executive Summary. Review of Maritime Transport.” 2020. [Online]. Available: https://unctad.org/system/files/officialdocument/rmt2020summary_en.pdf. [Accessed: Mar. 30, 2023].
  • 2. “ABS Advisory on NOx TIER III. Compliance.” [Online]. Available: https://ww2.eagle.org/content/dam/eagle/ advisories-and-debriefs/ABS-Advisory-on-NOx-Tier-IIICompliance-20068.pdf. [Accessed: Mar. 30, 2023].
  • 3. “Resolution MEPC.198(62).” Adopted on 15 July 2011. 2011 Guidelines Addressing Additional Aspects to the NOx Technical Code 2008 with Regard to Particular Requirements Related to Marine. Diesel Engines Fitted with Selective Catalytic Reduction (SCR) Systems. [Online]. Available: https:// wwwcdn.imo.org/localresources/en/KnowledgeCentre/ IndexofIMOResolutions/MEPCDocuments/MEPC.198(62). pdf. [Accessed: Mar. 30, 2023].
  • 4. “MARPOL Annex VI and the Act to Prevent Pollution from Ships (APPS).” [Online]. Available: https://www.epa.gov/ enforcement/marpol-annex-vi-and-act-prevent-pollutionships-apps. [Accessed: Mar. 30, 2023].
  • 5. Y. Moshentsev, O. Gogorenko, and O. Dvirna, “Possibilities for improving the cooling systems of IC engines of marine power plants,” Advances in Science and Technology Research Journal, vol. 16(3), pp. 183‒192, 2022. https://doi. org/10.12913/22998624/149658.
  • 6. “Wärtsilä Environmental Product Guide.” [Online]. Available: https://cdn.wartsila.com/docs/default-source/product-files/ egc/product-guide-o-env-environmental-solutions.pdf. [Accessed: Mar. 31, 2023].
  • 7. “New system PureSOx Express (in Ukrainian).” [Online]. Available: https://www.alfalaval.ua/media/news/2020/ new-alfa-laval-puresox-express-offers-easy-access-to-soxscrubber-advantages/ [Accessed: Mar. 31, 2023].
  • 8. Y. S. Choi and T. W. Lim, “Numerical simulation and validation in scrubber wash water discharge from ships,” Journal of Marine Science and Engineering, vol. 8(4), p. 272, 2020. https://doi.org/10.3390/jmse8040272.
  • 9. S. Endres, F. Maes, F. Hopkins, K. Houghton, E. M. Mårtensson, J. Oeffner, and D. Turner, “A new perspective at the shipair-sea-interface: The environmental impacts of exhaust gas scrubber discharge,” Frontiers in Marine Science, vol. 5, 2018. https://doi.org/10.3389/fmars.2018.00139.
  • 10. “SodaFlexx - Clean exhaust from ships.” [Online]. Available: https://sodaflexx-int.com [Accessed: Mar. 31, 2023].
  • 11. “Dry exhaust cleaning system installed on bulker.” [Online]. Available: https://maritime-executive.com/article/dryexhaust-cleaning-system-installed-on-bulker [Accessed: Mar. 31, 2023].
  • 12. “Dry exhaust gas cleaning system certified by DNV GL.” [Online]. Available: https://www.seatrade-maritime.com/ europe/dry-exhaust-gas-cleaning-system-certified-dnv-gl [Accessed: Mar. 31, 2023].
  • 13. “Dry exhaust gas scrubber.” [Online]. Available: https://www. crystec.com/ksicate.htm [Accessed: Mar. 31, 2023].
  • 14. V. V. Le, T. H. Truong, “A simulation study to assess the economic, energy and emissions characteristics of a marine engine equipped with exhaust gas recirculation,” 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020. https://doi.org/10.1063/5.0000135.
  • 15. O. A. Kuropyatnyk and S. V. Sagin, “Exhaust gas recirculation as a major technique designed to reduce NOх emissions from marine diesel engines,” OUR SEA: International Journal of Maritime Science & Technology, vol. 66, iss. 1, pp. 1–9, 2019. https://doi.org/10.17818/ NM/2019/1.1.
  • 16. S. V. Sagin and О. А. Kuropyatnyk, “The use of exhaust gas recirculation for ensuring the environmental performance of marine diesel engines,” OUR SEA: International Journal of Maritime Science & Technology, vol. 65, no. 2, pp. 78–86, June 2018. https://doi.org/10.17818/NM/ 2018/2.3.
  • 17. R. Varbanets, O. Shumylo, A. Marchenko, D. Minchev, V. Kyrnats, V. Zalozh, N. Aleksandrovska, R. Brusnyk, and K. Volovyk, “Concept of vibroacoustic diagnostics of the fuel injection and electronic cylinder lubrication systems of marine diesel engines,” Polish Maritime Research, vol. 29, no. 4, pp. 88‒96, 2022. https://doi.org/10.2478/pomr-2022-0046.
  • 18. D. Minchev, R. Varbanets, N. Aleksandrovskaya, and L. Pisintsaly, “Marine diesel engines operating cycle simulation for diagnostics issues,” Acta Polytechnica, vol. 3, no. 61, pp. 428‒440, 2021. [Online]. Available: https://ojs.cvut.cz/ojs/ index.php/ap/article/view/6833 [Accessed: Mar. 31, 2023].
  • 19. S. Neumann, R. Varbanets, D. Minchev, V. Malchevsky, and V. Zalozh, “Vibrodiagnostics of marine diesel engines in IMES GmbH systems,” Ships Offshore Struct., 2022. https://doi.org /10.1080/17445302.2022.2128558.
  • 20. M. H. Ghaemi, “Performance and emission modelling and simulation of marine diesel engines using publicly available engine data,” Polish Maritime Research, vol. 28, pp. 63‒87, 2021. https://doi.org/10.2478/pomr-2021-0050.
  • 21. S. Wang and L. Yao, “Effect of engine speeds and dimethyl ether on methyl decanoate HCCI combustion and emission characteristics based on low-speed two-stroke diesel engine,” Polish Maritime Research, vol. 27, pp. 85‒95, 2020. https://doi. org/10.2478/pomr-2020-0030.
  • 22. Z. Korczewski, “Test method for determining the chemical emissions of a marine diesel engine exhaust in operation,” Polish Maritime Research, vol. 28, pp. 76‒87, 2021. https:// doi.org/10.2478/pomr-2021-0035.
  • 23. A. Adamkiewicz, J. Fydrych, and J. Drzewieniecki, “Studies on the effects of cold starts of the ship main engine,” Polish Maritime Research, vol. 29, pp. 109‒118, 2022. https://doi. org/10.2478/pomr-2022-0031.
  • 24. Y. Zhao, Y. Fan, K. Fagerholt, and J. Zhou, “Reducing sulfur and nitrogen emissions in shipping economically,” Transportation Research Part D: Transport and Environment, vol. 90, January 2021. [Online]. Available: https://www.sciencedirect.com/ science/article/abs/pii/S1361920920308269?via%3Dihub [Accessed: Mar. 31, 2023].
  • 25. V. Kuznetsov, B. Dymo, S. Kuznetsova, M. Bondarenko, and A. Voloshyn, “Improvement of the cargo fleet vessels power plants ecological indexes by development of the exhaust gas systems,” Polish Maritime Research, vol. 28, pp. 97‒104, 2021. https://doi.org/10.2478/pomr-2021-0009.
  • 26. Y. A. Bystrov, S. A. Isayev, N. A. Kudryavtsev, and A. I. Leont’yev, Numerical simulation of heat transfer vortex intensification in the pipe packs. St. Petersburg: Shipbuilding, 2005.
  • 27. T. B. Gatski, M. Y. Hussaini, and J. L. Lumley, Simulation and Modelling of Turbulent Flows. Oxford University Press. Oxford, New York, 1996 [Online]. Available: https://vdoc. pub/documents/simulation-and-modelling-of-turbulentflows-60gogpq1fom0. [Accessed: Apr. 5, 2023].
  • 28. S. Sarkar and L. Balakrishnan, Application of a ReynoldsStress Turbulence Model to the Compressible Shear Layer. ICASE Report 90-18NASA CR 182002, 1990. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a227097. pdf. [Accessed: Apr. 10, 2023].
  • 29. About Code_Saturne. [Online]. Available: https://www.codesaturne.org/cms/web/ [Accessed: Apr. 10, 2023].
  • 30. SimScale CFD. [Online]. Available: https://www.simscale. com/product/cfd/ [Accessed: Apr. 10, 2023].
  • 31. B. V. Dymo, A. Y. Voloshyn, A. A. Yepifanov, and V. V. Kuznetsov, “Increase of ship power plants gas-air cooler efficiency,” Problemele Energeticii Regionale, vol. 2 (34), рp. 113‒124, 2017. https://doi.org/10.5281/zenodo.1189332.
  • 32. Marine Engine Programme. MAN Energy Solutions 2023. [Online]. Available: https://www.man-es.com/marine/ products/planning-tools-and-downloads/marine-engineprogramme. [Accessed: Apr. 10, 2023].
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81387fd-a97a-4479-8760-5afe671994a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.