PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza możliwości zastosowania elastomerowych systemów gąsienicowych w szybkobieżnych maszynach inżynieryjnych. Cz. 1, Przegląd rozwiązań konstrukcyjnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of the possibility of using rubber track systems in high-speed engineering machines. Part 1, Review of design solutions
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono analizę rozwiązań konstrukcyjnych układów jezdnych wykorzystujących gąsienice elastomerowe pod kątem możliwości ich użycia w szybkobieżnych maszynach inżynieryjnych, które wymagają intensywnego manewrowania oraz zdolności do rozwijania wysokich sił uciągu. Analizie poddano zarówno rozwiązania używane w aplikacjach cywilnych, jak i wyniki badań wykorzystania gąsienic elastomerowych w ciężkich pojazdach opancerzonych. Na tej podstawie sformułowano zalecenia konstrukcyjne do projektowania szybkobieżnych maszyn inżynieryjnych oraz wykorzystywanych w nich elastomerowych systemów gąsienicowych.
EN
The article presents an analysis of the design solutions of the running gear with rubber tracks in terms of their applicability in high-speed engineering machines that require intensive maneuvering and the ability to develop high tractive forces. Both solutions used in civil applications and the results of research on the use of rubber tracks in heavy armoured vehicles were analysed. On their basis, recommendations were formulated for the design of high-speed engineering machines and the rubber track systems used in them.
Rocznik
Strony
77--94
Opis fizyczny
Bibliogr. 38 poz., il., rys., tab., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Robotów i Konstrukcji Maszyn, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Robotów i Konstrukcji Maszyn, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] Strona firmy DRB, Rubber track, http://www.drbworld.com/en/business/rubber-track-and-undercarriage-system/rubber-track.php, [dostęp 10.12.2021].
  • [2] Dudziński P., Chołodowski J., Energy efficiency of rubber tracked chassis, Journal of KONES, 23, 2, 2016, 97-104.
  • [3] Dudziński P., Chołodowski J., Method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 1. A review of the state-of-the-art methods for modeling the internal resistance of tracked vehicles, Journal of Terramechanics, 96, 2021, 81-100.
  • [4] Chołodowski J., Dudziński P., A Method for Experimental Identification of Bending Resistance of Reinforced Rubber Belts, AIP Conference Proceedings 2078, 2019.
  • [5] Lescohier J., It’s gotta be the shoes, For Constructions Pros, 4.10.2017, https://www.forconstructionpros.com/equipment/earthmoving-compact/track-loaders/article/20977431/how-to-selectthe-right-tracks-for-your-track-loaders, [dostęp 10.12.2021].
  • [6] ASV POSI-track sets the benchmark for CTLs, Eartmoving Equipment Magazine, 13.03.2020, https://www.earthmovers-magazine.com.au/asv-posi-track-sets-the-benchmark-for-ctls/, [dostęp 10.12.2021].
  • [7] McConnell A., Comso debuts new CTS and quality affordable track design, Successful Farming, 17.02.2017, https://www.agriculture.com/machinery/tractors/camso-debuts-new-cts-and-qualityaffordable-track-design, [dostęp 10.12.2021].
  • [8] Agricultural track and wheels lineup for John Deere, Camso 1708 AG, Brochure Track Wheel JD 8,5x8,5 EN, Canada 2018.
  • [9] Strona firmy Bridgestone, Introduction to agricultural tracks, http://www.bridgestoneindustrial. eu/products/ag-tracks/, [dostęp 10.12.2021].
  • [10] Strona firmy Continental, Drive lug reinforcement, https://www.continental-industry.com/en/solutions/undercarriage/rubber-tracks/products/product-range/drive-lug-reinforcement, [dostęp 10.12.2021].
  • [11] Hill Peter, This temperature sensor helps extend rubber track life, Future Farming, 24.11.2017, https://www.futurefarming.com/Machinery/Articles/2017/11/This-temperature-sensor-helpsextend-rubber-track-life-4134WP/, [dostęp 10.12.2021].
  • [12] Storlie B., Tips to Extend the Life of Compact Track Loaders’ Rubber Tracks, For Construction Pros, 25.04.2017, https://www.forconstructionpros.com/equipment/fleet-maintenance/undercarriage/article/20859383/tips-to-extend-the-life-of-compact-track-loaders-rubber-tracks, [dostęp 10.12.2021].
  • [13] Military Vehicles and Equipment for Sale, Caterpillar Deuce Dozer, https://www.modsurplus.co.uk/index.php/export-licensing/siel-stock/article/40143-caterpillar-deuce-dozer, [dostęp 10.12.2021].
  • [14] Service Guide, Agricultural Track, Caterpillar Challenger 65, 70, 75, 85, 95 (Cat Legacy Tillage), CPB-317, Camso 2018.
  • [15] Le chenilles, une solution gagnante pour les engins de récolte et les sols, Le Sillon Beige, 27.08.2020, https://www.sillonbelge.be/6426/article/2020-08-27/les-chenilles-une-solution-gagnante-pourles-engins-de-recolte-et-les-sols, [dostęp 10.12.2021].
  • [16] Tuschner J., Friction vs. Positive Drive Ag Track Systems, Farm Equipment, 23.10.2020, https://www.farm-equipment.com/articles/18856-friction-vs-positive-drive-ag-track-systems, [dostęp 10.12.2021].
  • [17] Hagen A., Claas Gen III TT System – the track story of Class, Claas Industrietechnik GmbH, Kansas City, Jan 2013.
  • [18] Keller T., Sandin M., Colombi T., Horn R., Or D., Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning, Soil and Tillage Research, 194, 2019.
  • [19] McPhee J.E., Antille D.L., Tullberg J.N., Doyle R.B., Boersma M., Managing soil compaction. A choice of low-mass autonomous vehicles or controlled traffic?, Biosystems Engineering, 195, 2020, 227-241.
  • [20] Thorsøe M.H., Noe E.B., Lamande M., Frelih-Larsen A., Kjeldsen C., Zandersen M., Schjønning P., Sustainable soil management - Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention, Land Use Policy, 86, 2019, 427-437.
  • [21] Błaszkiewicz Z., Identification and quantification of selected factors determining soil compression by tractors of weights with single wheels and dual wheels, Journal of Research and Applications in Agricultural Engineering, 64, 1, 2019, 4-12.
  • [22] Marsili A., Servadio P., Compaction effects of rubber or metal-tracked tractor passes on agricultural soils, Soil and Tillage Research, 37, 1, 1996, 37-45.
  • [23] Arvidsson J., Westlin H., Keller T., Gilbertsson M., Rubber track systems for conventional tractors – Effects on soil compaction and traction, Soil and Tillage Research, 117, 2011, 103-109.
  • [24] Ansorge D., Soil Reaction to Heavily Loaded Rubber tracks and Tyres, Doctoral thesis, Cranfield University 2007.
  • [25] Rasool S., Raheman H., Improving the tractive performance of walking tractors using rubber tracks, Biosystems Engineering, 167, 2018, 51-62.
  • [26] Grisso R., Perumpral J., Zoz F., An empirical model for tractive performance of rubber-tracks in agricultural soils, Journal of Terramechanics, 43, 2, 2006, 225-236..
  • [27] Molari G., Bellentani L., Guarnieri A., Walker M., Sedoni E., Performance of an agricultural tractor fitted with rubber tracks, Biosystems Engineering, 111, 1, 2012, 57-63, 1537-5110.
  • [28] Molari G., Mattetti M., Walker M., Field performance of an agricultural tractor fitted with rubber tracks on a low trafficable soil, Journal of Agricultural Engineering, 46, 477, 2015, 162-166.
  • [29] Dong Z., Quan L., Yang J., Tracked walking mechanism for large hydraulic excavators, Automation in Construction, 96, 2018, 88-102.
  • [30] Palazzo A.J., Ayers P.D., Fehmi J.S., Shoop S., Sullivan P., Assessing the impacts of military vehicle traffic on natural areas. Introduction to the special issue and review of the relevant military vehicle impact literature, Journal of Terramechanics, 42, 3-4, 2005, 143-158.
  • [31] Håland W.C., Power on Rubber Tracks, Truppendienst, 2018, www.truppendienst.com/ themen/beitraege/artikel/power-on-rubber-tracks, [dostęp 10.12.2021].
  • [32] Kane J.R., Ayers P., Howard H., Anderson A., Koch D., Multipass coefficients for terrain impacts based on military vehicle type, size and dynamic operating properties, Journal of Terramechanics 50, 3, 2013, 175-183.
  • [33] Composite rubber track technology for defense and security, Soucy Composite Rubber Track Systems, Rev. 05, September 2018, Canada.
  • [34] Soucy Defense, https://www.army-technology.com/contractors/hydraulics/soucy-defense/, [dostęp 10.12.2021].
  • [35] Marcotte T., Soucy Composite Rubber Track Technology, 2016 NDIA ground vehicle systems engineering and technology symposium. Power and mobility technical session, 2-4 August 2016, Novi, Michigan.
  • [36] Liu W., Cheng K., Wang J., Failure analysis of the rubber track of a tracked transporter, Advances in Mechanical Engineering, 10, 7, 2018, 1-8.
  • [37] Moreno A., Abbreviated Test Report for the Technical Feasibility Test of the Demonstration of the Future Combat Vehicle System 15-Inch M1113A3 “Heavy” Band Track, Yuma Country, Ariz.: Yuma Proving Ground, 2004.
  • [38] Matsumura J., Gordon J., Steeb R., Boston S., Lee C., Padilla P., Parmentola J., Assessing Tracked and Wheeled Vehicles for Australian Mounted Close Combat Operations Lessons Learned in Recent Conflicts, Impact of Advanced Technologies, and System-Level Implications, RAN D Corporation, Santa Monica, Calif., 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c80fc512-3308-4e81-97e4-242f8e6ce9a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.