PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and implementation of control algorithms for single-axis sun tracking systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar energy is the most widespread renewable energy source due to the modular structures of PV modules and low maintenance requirement. In this study, a sun tracking system is proposed with a view to achieving a generated energy output than with a fixed PV system. There are two different control structures and algorithms are proposed to control the sun tracking system to increase efficiency. The tracking system uses algorithms to determine the exact position of the sun at any time during the day and to turn the PV modules to a position perpendicular to the sun. In the first control circuit, the position of the sun is precisely found with two identical LDRs and an angle sensor. In the second control circuit, the position of the sun is tracked by using a real time clock and an angle sensor to limit the platform. Greater energy generation is achieved by turning existing solar panels to face the sun. Furthermore, a data acquisition device stores and monitors daily irradiation data on a computer and the data entered in the database are used to produce graphic interfaces.
Rocznik
Strony
32--42
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Nevsehir Haci Bektas Veli University, Electrical and Electronics Engineering
  • Vocational High School, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
Bibliografia
  • 1. Kabalci, E. (2011) Development of a feasibility prediction tool for solar power plant installation analyses. Applied Energy, 88 (11), 4078–4086.
  • 2. Bialasiewicz, J.T. (2008) Renewable Energy Systems With Photovoltaic Power Generators: Operation and Modeling. IEEE Transactions on Industrial Electronics, 55 (7), 2752–2758.
  • 3. Bahrami, A., Okoye, C.O., and Atikol, U. (2016) The effect of latitude on the performance of different solar trackers in Europe and Africa. Applied Energy, 177, 896–906.
  • 4. Haryanti, M., Halim, A., and Yusuf, A. (2014) Development of two axis solar tracking using five photodiodes. 2014 Electrical Power Electronics, Communicatons, Control and Informatics Seminar (EECCIS).
  • 5. Khoo, Y.S., Nobre, A., Malhotra, R., Yang, D., Ruther, R., Reindl, T., and Aberle, A.G. (2014) Optimal Orientation and Tilt Angle for Maximizing in Plane Solar Irradiation for PV Applications in Singapore. IEEE Journal of Photovoltaics, 4 (2), 647–653.
  • 6. Vieira, R.G., Guerra, F.K.O.M.V., Vale, M.R.B.G., and Araújo, M.M. (2016) Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator. Renewable and Sustainable Energy Reviews, 64, 672–681.
  • 7. Lazaroiu, G.C., Longo, M., Roscia, M., and Pagano, M. (2015) Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption. Energy Conversion and Management, 92, 143–148.
  • 8. Abadi, I., Musyafa, A., and Soeprijanto, A. (2014) Design of single axis solar tracking system at photovoltaic panel using fuzzy logic controller. 5th Brunei International Conference on Engineering and Technology (BICET 2014).
  • 9. Sidek, M.H.M., Azis, N., Hasan, W.Z.W., Kadir, M.Z.A.A., Shafie, S., and Radzi, M.A.M. (2017) Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy, 124, 160–170.
  • 10. Şenpinar, A., and Cebeci, M. (2012) Evaluation of power output for fixed and two-axis tracking PV arrays. Applied Energy, 92, 677–685.
  • 11. Zhan, T.-S., Lin, W.-M., Tsai, M.-H., and Wang, G.-S. (2013) Design and Implementation of the Dual Axis Solar Tracking System. 2013 IEEE 37th Annual Computer Software and Applications Conference.
  • 12. Zolkapli, M., Al-Junid, S.A.M., Othman, Z., Manut, A., and Zulkifli, M.A.M. (2013) Highefficiency dual-axis solar tracking developement using Arduino. 2013 International Conference on Technology Informatics, Management, Engineering and Environment.
  • 13. Li, H., Zhao, C., Wang, H., Xie, S., and Luo, J. (2014) An improved PV system based on dual axis solar tracking and MPPT. 2014 IEEE International Conference on Mechatronics and Automation.
  • 14. Seme, S., Štumberger, B., and Hadžiselimović, M. (2016) A novel prediction algorithm for solar angles using second derivative of the energy for photovoltaic sun tracking purposes. Solar Energy, 137, 201–211.
  • 15. Fathabadi, H. (2016) Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems. Applied Energy, 173, 448–459.
  • 16. Skouri, S., Ali, A.B.H., Bouadila, S., Salah, M.B., and Nasrallah, S.B. (2016) Design and construction of sun tracking systems for solar parabolic concentrator displacement. Renewable and Sustainable Energy Reviews, 60, 1419–1429.
  • 17. Yilmaz, S., Ozcalik, H.R., Dogmus, O., Dincer, F., Akgol, O., and Karaaslan, M. (2015) Design of two axes sun tracking controller with analytically solar radiation calculations. Renewable and Sustainable Energy Reviews, 43, 997–1005.
  • 18. Maatallah, T., Alimi, S.E., and Nassrallah, S.B. (2011) Performance modeling and investigation of fixed single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia. Renewable and Sustainable Energy Reviews, 15 (8), 4053–4066.
  • 19. Hong, T., Jeong, K., Ban, C., Oh, J., Koo, C., Kim, J., and Lee, M. (2016) A Preliminary Study on the 2-axis Hybrid Solar Tracking Method for the Smart Photovoltaic Blind. Energy Procedia, 88, 484–490.
  • 20. Balogun, E.B., Huang, X., Tran, D., Lin, Y.-C., Liao, M., and Adaramola, M.F. (2015) A robust realtime online comparative monitoring of an azimuthalaltitude dual axis GST 300 and a 45° fixed solar photovoltaic energy tracking systems. SoutheastCon 2015.
  • 21. Svetozarevic, B., Nagy, Z., Hofer, J., Jacob, D., Begle, M., Chatzi, E., and Schlueter, A. (2016) SoRoTrack: A two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. 2016 IEEE International Conference on Robotics and Automation (ICRA).
  • 22. Ahmed, A.J., and Khan, S.N. (2014) Performance evaluation of solar panel and proposed new algorithm of solar tracking system. 2nd International Conference on Green Energy and Technology.
  • 23. Rustemli, S., Dincer, F., Unal, E., Karaaslan, M., and Sabah, C. (2013) The analysis on sun tracking and cooling systems for photovoltaic panels. Renewable and Sustainable Energy Reviews, 22, 598–603.
  • 24. ±1.5g, ±6g Three Axis Low-g Micromachined Accelerometer.
  • 25. DS1302 Trickle-Charge Timekeeping Chip.
  • 26. L6201, L6202 - L6203, DMOS Full Bridge Driver.
  • 27. Ahmad, S., Shafie, S., Kadir, M.Z.A.A., and Ahmad, N.S. (2013) On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia. Renewable and Sustainable Energy Reviews, 28, 635–642.
  • 28. Duarte, F., Gaspar, P.D., and Gonçalves, L.C. (2010) Two axis solar tracker based on solar maps controlled by a low-power microcontroller. Renewable Energy and Power Quality Journal, 1 (08), 411–415.
  • 29. Suria, A.K., and Idris, R.M. (2015) Dual-axis solar tracker based on predictive control algorithms. 2015 IEEE Conference on Energy Conversion (CENCON).
  • 30. UTR-C12 UHF Data Transceiver.
  • 31. Kabalci, E., Calpbinici, A., and Kabalci, Y. (2015) A single-axis solar tracking system and monitoring software. 2015 7th International Conference on Electronics Computers and Artificial Intelligence (ECAI).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c80bd532-7f0a-445d-b7ff-bd581b90e6f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.