PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of pressure drop, spray angle, and sprinkling intensity distribution in the spray stream produced by the water-foam nozzle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper summarises a series of large-scale fire suppression tests conducted to simulate a fire in the big surface and/or surface sprinkling. The subject of this paper is the research on water spraying with the use of the Turbo Jet 2011 water-foam nozzle manufactured by Supon Białystok. The results discuss the pressure losses caused by the flow through the discharge hose, spray angle, and the intensity of surface sprinkling. The greatest stream ranges and the highest maximum values of the sprinkling intensity were obtained at the capacity of 400 l/min, and a solid spray angle. The smallest values were obtained at 200 l/min, a pressure of 5 bar, and a solid spray angle. The actual pressures taking into account the losses in the hose section were calculated. As for the highest firefighting effectiveness of the stream, the authors recommended the following parameters: semi spray angle, 200 l/min, and 2.5 bar.
Rocznik
Strony
42--49
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
  • Poznan University of Technology, Department of Chemical Engineering and Equipment Poznan, Poland
  • Poznan University of Technology, Department of Chemical Engineering and Equipment Poznan, Poland
  • Poznan University of Technology, Department of Chemical Engineering and Equipment Poznan, Poland
  • Poznan University of Technology, Department of Chemical Engineering and Equipment Poznan, Poland
  • Poznan University of Technology, Department of Chemical Engineering and Equipment Poznan, Poland
  • Opole University of Technology, Faculty of Mechanical Engineering, Department of Process and Environmental Engineering Opole, Poland
  • Opole University of Technology, Faculty of Mechanical Engineering, Department of Process and Environmental Engineering Opole, Poland
autor
  • Adam Mickiewicz University, Faculty of Chemistry Poznan, Poland
Bibliografia
  • 1. Gai, G., Hadjadj, A., Kudriakov, S., Mimouni, S. & Tho-mine, O. (2021). Numerical study of spray-induced turbulence using industrial fire-mitigation nozzles. Energies 14(1135). DOI: 10.3390/en14041135.
  • 2. Huang, D.M., Li, L.M., Zhang, H., Xu, C.M., Li, Y. & Yang, H. (2009). Recent progresses in research of fire protection on historic buildings. J. Appl. Fire Sci. 19(1), 63–81. DOI:10.2190/AF.19.1.D.
  • 3. Outinen, J., Samec, J. & Sokol, Z. (2012). Research on fire protection methods and a case study “Futurum”. Proc. Eng. 40, 339–344. DOI: 10.1016/j.proeng.2012.07.105.
  • 4. Zhang, D., Li, Z., Yi, W. & Wang, F. (2013). Test study of spray characteristics of spiral nozzle in the spray tower. Acta Energiae Solaris Sin. 34, 1969–1972. DOI: 10.1051/conf/202017001009.
  • 5. Arvidson, M. (2014). Large-scale water spray and water mist fire suppression system tests for the protection of ro–ro cargo decks on ships. Fire Techn. 50, 589–610. DOI: 10.1007/s10694-012-0312-7.
  • 6. Qina, J. & Chow, W.K. (2013). Experimental data on water mist suppression. Proc. Eng. 62, 868–877. DOI: 10.1016/j. proeng.2013.08.137.
  • 7. Ha, G., Shin, W.G. & Lee, J. (2021). Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment. Nucl. Eng. Technol. 53(4), 1157–1166. DOI: 10.1016/j.net.2020.09.028.
  • 8. Ren, M.X., Guo, Q., Wang, D.M. & Zuo, B.S. (2014). The design and optimization of foam nozzle for dust control underground coal mine. J. China Coal Soc. 39(6), 1102–1106. DOI: 10.13225/j.cnki.jccs.2013.1340.
  • 9. Fangwei, H., Deming, W., Jiaxing, J. & Xiaolong, Z. (2016). A new design of foam spray nozzle used for precise dust control in underground coal mines. Int. J. Min. Sci. Technol. 26(2), 241–246. DOI: 10.1016/j.ijmst.2015.12.009.
  • 10. Gałaj, J., Drzymała, T. & Pełech, A. (2017a). Analysis of the sprinkling intensity of the selected water nozzle. BUSES: Technology, Operation, Transport System 12, 873–879.
  • 11. Gałaj, J., Drzymała, T. & Piątek, P. (2017b). Analysis of influence of tilt angle on the distribution of water droplets diameters in a spray generated by the Turbo Master 52 nozzle. Proc. Eng. 172, 300–309. DOI: 10.1016/j.proeng.2017.02.118.
  • 12. Bielicki, P. (1996). Fundamentals of fire fighting tactics. The School of Aspirants of the State Fire Service in Krakow. Krakow, Poland.
  • 13. Sardqvist, S. (1996). An engineering approach to fire-fighting tactics. Unpublished doctoral dissertation, University of Lund, Lund, Sweden.
  • 14. Gil, D. (2013). Equipment and extinguishing agents. NCO School of the State Fire Service in Bydgoszcz, Bydgoszcz, Poland.
  • 15. Ma, J.Y. (2014). Analysis on the fire risk existing in the storage of textile materials and textile goods. Proc. Eng. 71, 271–275. DOI: 10.1016/j.proeng.2014.04.039.
  • 16. Roguski, J., Zbrożek, P. & Czerwieńko, D. (2012). Selected aspects of the use of water mist extinguishing devices in buildings. Józefa Tuliszkowski’s Publishing House of the Scientific and Research Center for Fire Protection State Research Institute, Józefów, Poland.
  • 17. Derecki, T. (1999). Fire-fighting equipment for the delivery of water and fire-fighting foams. Main School of Fire Service, Warsaw, Poland.
  • 18. Gil, D. (2004). Fire-fighting equipment. NCO School of the State Fire Service in Bydgoszcz, Bydgoszcz, Poland.
  • 19. Supron 3, Retrieved May 10, 2021 from https://supron.pl/en/product/hydrant-nozzle-pwh-52-d13-150/.
  • 20. Hietaniemi, J., Cajot, L.G., Pierre, M., Fraser-Mitchell, J., Joyeux, D. & Papaioannou, K. (2005). Risk-based fire resistance requirements. Final report. Office for Official Publications of the European Communities. Luxembourg.
  • 21. European sprinkler organisation homepage, Retrieved December 10, 2020 from www.eurosprinkler.org.
  • 22. Supon Białystok, Retrieved November 12, 2020 from http://www.supon.bialystok.pl.
  • 23. Gałaj, J., Pawlak, A., Pawlak, E. & Zegar, W. (2016). Laboratory in Hydromechanics for SGSP Students with Examples. Main School of Fire Service, Warsaw, Poland.
  • 24. Brkić D. & Prak P. (2018). Unified friction formulation from laminar to fully rough turbulent flow. Appl. Sci. 8(11), 2036, 1–13. DOI:10.3390/app8112036.
  • 25. Drzymała, T., Gałaj, J. & Wójcik, M. (2017). Analysis of the impact of the flow rate and settings of the nozzle Turbojet 52 on distribution of the sprinkling intensity in spray. Sci. Paper of Main School of Fire Service 61(1), 151–170.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c80591a4-fafd-492b-8881-d3f42145310f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.