PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term fire effects of the drained open fen on organic soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Długotrwały wpływ pożaru osuszonego torfowiska niskiego na właściwości gleb organicznych
Języki publikacji
EN
Abstrakty
EN
Fire has considerable impact on vegetation and organic soils properties. As we observed that the differences between vegetation of burnt and unburnt areas on the rich fen are visible 11 years after the fire, we assumed that the post-fire changes are long lasting, yet limited exclusively to the burnt areas. In order to check this hypothesis we studied spatial differentiation of physical and chemical properties of soils, and productivity capacities of burnt and unburnt areas in the fen in Biebrza National Park. We took soil samples from the neighboring burnt and unburnt areas, from the depth of 0–30 cm and 30–50 cm. We analyzed 21 parameters of the soils including: pH, ash content, moisture, bulk density, exchangeable K, Na, Ca, available P, N-NH4+, N-NO3, total N, C, K, Na, Ca, Mg, Fe, P; and calculated C:N, C:P ratios. Surface layer of the burnt soils differed significantly from the unburnt soils in respect of 17 out of 21 parameters. The most pronounced difference was observed for available phosphorous (on average 6 times higher for the burnt soils). The differences in the deeper layer were mostly insignificant. The burnt areas were also characterized by twofold higher plant productivity than recorded for the unburnt areas. The influence of fire on peaty soils was long lasting but mostly limited to the surface layer of the soils. In the case of particular soil features, the post-fire differences were modified by advanced muck formation (moorshing) processes in the unburnt areas. Since the fire led to long lasting increase of fertility, the recovery of fen vegetation is unlikely.
PL
Pożary wpływają istotnie na roślinność oraz właściwości gleb organicznych. Zaobserwowano, że nawet po 11 latach od wystąpienia podpowierzchniowego pożaru torfowiska niskiego wciąż istnieją wyraźne różnice pokrywy roślinnej obszarów wypalonych i niewypalonych. Na tej podstawie założono, że wpływ pożaru na ekosystem torfowiskowy jest długotrwały, jednak nie jest widoczny na sąsiednich obszarach niewypalonych. W celu weryfikacji tej hipotezy zbadano właściwości fizyczne i chemiczne gleby, a także produktywność biomasy roślinnej na torfowisku niskim zlokalizowanym w Biebrzańskim Parku Narodowym. Z sąsiadujących obszarów wypalonych oraz niewypalonych, z głębokości 0–30 cm oraz 30–50 cm pobrano próby gleby torfowej. Przeanalizowano 21 cech gleby: pH, popielność, wilgotność, gęstość, wymiennie związane K, Na, Ca, dostępne dla roślin P, N-NH4+, N-NO3-, całkowite N, C, K, Na, Ca, Mg, Fe, P; oraz obliczono stosunki C:N, C:P, Fe:P. W 17 na 21 przebadanych cech stwierdzono istotne różnice w chemizmie wierzchniej warstwy gleby pobranej z miejsc wypalonych i niewypalonych. Najbardziej wyraźną różnicą było zwiększenie (średnio sześciokrotnie) zawartości dostępnego P w glebach z obszarów wypalonych. W większości badanych cech warstwy głębszej nie stwierdzono istotnych różnic. Obszary wypalone charakteryzowały się dwukrotnie wyższą produktywnością biomasy roślinnej. Stwierdzono, że wpływ pożaru na glebę torfową jest długotrwały i ograniczony głównie do jej wierzchniej warstwy. Część zaobserwowanych różnic może jednak wynikać z postępującego procesu murszenia torfu, zachodzącego na obszarach niewypalonych. Z powodu zwiększenia dostępności pierwiastków biogennych scenariusz powrotu typowych zbiorowisk torfowisk niskich na obszary wypalone nie wydaje się prawdopodobny.
Rocznik
Strony
11--19
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • University of Warsaw, Poland, Department of Plant Ecology and Environmental Conservation Faculty of Biology, Biological and Chemical Research Centre
autor
  • University of Warsaw, Poland, Department of Plant Ecology and Environmental Conservation Faculty of Biology, Biological and Chemical Research Centre
  • University of Warsaw, Poland, Department of Plant Ecology and Environmental Conservation Faculty of Biology, Biological and Chemical Research Centre
Bibliografia
  • [1]. Arocena, J.M. & Opio, C. (2003). Prescribed fire-induced changes in properties of sub-boreal forest soils, Geoderma, 113, 1, pp. 1–16.
  • [2]. Bartoszuk, H. (2005). Plant communities of Biebrza National Park, in: Przyroda Biebrzańskiego Parku Narodowego, Dyrcz, A. & Werpachowski, C. (Eds). Monografia, Osowiec-Twierdza: BPN, pp. 133–148. (in Polish)
  • [3]. Benscoter, B.W. & Wieder, R.K. (2003). Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire, Canadian Journal of Forest Research, 33, 12, pp. 2509–2513.
  • [4]. Campbell, G.S., Jungbauer Jr, J.D., Bristow, K.L. & Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire, Soil Science, 159, 6, pp. 363–374.
  • [5]. Certini, G. (2005). Effects of fire on properties of forest soils: A review, Oecologia, 143, 1, pp. 1–10.
  • [6]. Davies, G.M., Gray, A., Rein, G. & Legg, C.J. (2013). Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecology and Management, 308, pp. 169–177.
  • [7]. DeBano, L.F. (2000). The role of fire and soil heating on water repellency in wildland environments: A review, Journal of Hydrology, 231–232, pp. 195–206.
  • [8]. Dembek, W., Oświt, J. & Rycharski, M. (2005). Peatlands and peat in the Biebrza Urstromtal, in: Przyroda Biebrzańskiego Parku Narodowego, Dyrcz, A. & Werpachowski, C. (Eds.). Monografia. Osowiec-Twierdza: BPN, pp. 33–58. (in Polish)
  • [9]. Dikici, H. & Yilmaz, C.H. (2006). Peat fire effects on some properties of an artificially drained peatland, Journal of Environmental Quality, 35, 3, pp. 866–870.
  • [10]. Egner, H., Riehm, H. & Domingo, W.R. (1960). Studies on chemical soil analysis as the basis for the assessment of nutrient status of soil. II: Chemical extraction methods for phosphorus and potassium determination, Kungliga Lantbrukshügskolans Annaler, 26, pp. 199–215. (in German)
  • [11]. Flores, C., Bounds, D.L. & Ruby, D.E. (2011). Does prescribed fire benefit wetland vegetation?, Wetlands, 31, 1, pp. 35–44.
  • [12]. Giovannini, C., Lucchesi, S. & Giachetti, M. (1990). Effects of heating on some chemical parameters related to soil fertility and plant growth, Soil Science, 149, 6, pp. 344–350.
  • [13]. Grygoruk, M., Bańkowska, A., Jabłońska, E., Janauer, G.A., Kubrak, J., Mirosław-Świątek, D. & Kotowski, W. (2015). Assessing habitat exposure to eutrophication in restored wetlands: Model-supported ex-ante approach to rewetting drained mires, Journal of Environmental Management, 152, 5, pp. 230–240.
  • [14]. Holden, J., Chapman, P.J. & Labadz, J.C. 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration, Progress in Physical Geography, 28, 1, pp. 95–123.
  • [15]. Kania, J., Malawska, M., Gutry, P., Kamiński, J. & Wiłkomirski, B. (2006). Environmental changes of fen caused by fire, Woda – Środowisko – Obszary Wiejskie, 2, 18, pp. 155–173. (in Polish)
  • [16]. Ketterings, Q.M. & Bigham, J.M. (2000). Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia, Soil Science Society of America Journal, 64, 5, pp. 1826–1833.
  • [17]. Kimura, H. & Tsuyuzaki, S. (2011). Fire severity affects vegetation and seed bank in a wetland, Applied Vegetation Science, 14, 3, pp. 350–357.
  • [18]. Klimkowska, A., Bekker, R.M., van Diggelen, R. & Kotowski, W. (2010). Species trait shifts in vegetation and soil seed bank during fen degradation, Plant Ecology, 206, 1, pp. 59–82.
  • [19]. Laiho, R. & Laine, J. (1995). Changes in mineral element concentrations in peat soils drained for forestry in Finland, Scandinavian Journal of Forest Research, 10, 1–4, pp. 218–224.
  • [20]. Laine, J., Vasander, H. & Laiho, R. (1995). Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland, Journal of Applied Ecology, 32, pp. 785–802.
  • [21]. Laubhan, M.K. (1995). Effects of prescribed fire on moist-soil vegetation and soil macronutrients, Wetlands, 15, 2, pp. 159–166.
  • [22]. Lijklema, L. (1980). Interaction of orthophosphate with iron(III) and aluminum hydroxides, Environmental Science and Technology, 14, 5, pp. 537–541.
  • [23]. Marcos, E., Tárrega, R. & Luis, E. (2007). Changes in a humic cambisol heated (100–500°C) under laboratory conditions: The significance of heating time, Geoderma, 138, 3–4, pp. 237–243.
  • [24]. Mars, H. De, Wassen, M. & Peeters, W. (1996). The effect of drainage and management on peat chemistry and nutrient deficiency in the former Jegrznia-floodplain (NE-Poland), Vegetatio, 126, pp. 59–72.
  • [25]. McEachern, P., Prepas, E.E., Gibson, J.J. & Dinsmore, W.P. (2000). Forest fire induced impacts on phosphorus, nitrogen, and chlorophyll a concentrations in boreal subarctic lakes of northern Alberta, Canadian Journal of Fisheries and Aquatic Sciences, 57, S2, pp. 73–81.
  • [26]. Mętrak, M., Malawska, M., Kamiński, J., Błocka, A. & Wiłkomirski, B. (2008). Plant secondary succession patterns after 2002 wildfire in the Biebrza National Park, Phytopedon, 7, 2008/1, pp. 109–114.
  • [27]. Mętrak, M., Malawska, M., Kamiński, J. & Wiłkomirski, B. (2006). Geochemical changes of peat soils and plant succession on the deeply burnt mires, Polish Journal of Environmental Studies, 15, 5D, pp. 57–66.
  • [28]. Middleton, B.A., Holsten, B. & van Diggelen, R. (2006). Biodiversity management of fens and fen meadows by grazing, cutting and burning, Applied Vegetation Science, 9, pp. 307–316.
  • [29]. Neary, D.G., Klopatek, C.C., DeBano, L.F. & Folliott, P.F. (1999). Fire effects on belowground sustainability: A review and synthesis, Forest Ecology and Management, 122, 1–2, pp. 51–71.
  • [30]. Okruszko, H. (1991). Wetlands transformation after draining, Zeszyty Problemowe Postępów Nauk Rolniczych, 372, pp. 251–267. (in Polish)
  • [31]. Olila, O.G., Olila, O.G., Reddy, K.R., Reddy, K.R., Stites, D.L. & Stites, D.L. (1997). Influence of draining on soil phosphorus forms and distribution in a constructed wetland, Ecological Engineering, 9, pp. 157–169.
  • [32]. Ostrowska, A., Gawliński, S. & Szczubiałka, Z. (1991). Metody analizy i oceny właściwości gleb i roślin, Warszawa: Instytut Ochrony Środowiska.
  • [33]. Qian, Y., Miao, S.L., Gu, B. & Li, Y.C. (2009a). Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades, Journal of Environmental Quality, 38, 2, pp. 451–464.
  • [34]. Qian, Y., Miao, S.L., Gu, B. & Li, Y.C. (2009b). Estimation of postfire nutrient loss in the Florida everglades, Journal of Environmental Quality, 38, 5, pp. 1812–1820.
  • [35]. Rein, G., Cleaver, N., Ashton, C., Pironi, P. & Torero, J.L. (2008). The severity of smouldering peat fires and damage to the forest soil, Catena, 74, 3, pp. 304–309.
  • [36]. Sala, O.E. & Austin, A.T. (2000). Methods of estimating aboveground net primary productivity, Methods in Ecosystem Science, pp. 31–43.
  • [37]. Sapek, A. (2008). Phosphate and ammonium concentrations in groundwater from peat soils in relation to the water table, Polish Journal of Soil Science, 41, 2, pp. 139–148.
  • [38]. Schrautzer, J., Sival, F., Breuer, M., Runhaar, H. & Fichtner, A. (2013). Characterizing and evaluating successional pathways of fen degradation and restoration, Ecological Engineering, 25, pp. 108–120.
  • [39]. Smith, S., Newman, S., Garrett, P. & Leeds, J. (2001). Differential effects of surface and peat fire on soil constituents in a degraded wetland of the northern Florida Everglades, Journal of Environmental Quality, 30, 6, pp. 1998–2005.
  • [40]. Sundström, E., Magnusson, T. & Hånell, B. (2000). Nutrient conditions in drained peatlands along a north-south climatic gradient in Sweden, Forest Ecology and Management, 126, 2, pp. 149–161.
  • [41]. Tiemeyer, B., Frings, J., Kahle, P., Köhne, S. & Lennartz, B. (2007). A comprehensive study of nutrient losses, soil properties and groundwater concentrations in a degraded peatland used as an intensive meadow – implications for re-wetting, Journal of Hydrology, 345, 1–2, pp. 80–101.
  • [42]. Turetsky, M.R. & Louis, V.L.S. (2006). Disturbance in boreal peatlands, in: Boreal Peatland Ecosystems, Wieder, R. & Vitt, D. (Eds.). Berlin Heidelberg: Springer, pp. 359–379.
  • [43]. Turetsky, M.R., Benscoter, B., Page, S., Rein, G., van der Werf, G.R. & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss, Nature Geoscience, 8, 1, pp. 11–14.
  • [44]. Venterink, H.O., Kardel, I., Kotowski, W., Peeters, W. & Wassen, M.J. (2009). Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland, Biogeochemistry, 93, 3, pp. 235–252.
  • [45]. Verhoeven, J.T.A., Koerselman, W. & Meuleman, A.F.M. (1996). Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: Relations with atmospheric inputs and management regimes, Trends in Ecology & Evolution, 11, 12, pp. 494–497.
  • [46]. Wang, G., Yu, X., Bao, K., Xing, W., Gao, C., Lin, Q. & Lu, X. (2015). Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs, Chemosphere, 119, pp. 1329–1334.
  • [47]. Wassen, M.J. (1995). Hydrology, water chemistry and nutrient accumulation in the Biebrza fens and floodplains (Poland), Wetlands Ecology and Management, 3, 2, pp. 125–137.
  • [48]. Watts, A.C. & Kobziar, L.N. (2013). Smoldering combustion and ground fires, Fire Ecology, 9, 1, pp. 124–132.
  • [49]. Zak, D. & Gelbrecht, J. (2007). The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany), Biogeochemistry, 85, 2, pp. 141–151.
  • [50]. Zak, D., Gelbrecht, J., Wagner, C. & Steinberg, C.E.W. (2008). Evaluation of phosphorus mobilization potential in rewetted fens by an improved sequential chemical extraction procedure, European Journal of Soil Science, 59, 6, pp. 1191–1201.
  • [51]. Zak, D., Gelbrecht, J., Zerbe, S., Shatwell, T., Barth, M., Cabezas, A. & Steffenhagen, P. (2014). How helophytes influence the phosphorus cycle in degraded inundated peat soils – Implications for fen restoration, Ecological Engineering, 66, pp. 82–90.
  • [52]. Zak, D., Wagner, C., Payer, B., Augustin, J. & Gelbrecht, J. (2010). Phosphorus mobilization in rewetted fens: The effect of altered peat properties and implications for their restoration, Ecological Applications, 20, 5, pp. 1336–1349.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c8024222-cd10-4fc7-9b85-524c65b0a970
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.