PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A flywheel-based regenerative braking system for railway vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Regenerative braking is a technique that employs electric motors to convert the dynamic mechanical energy from the motor’s spinning rotor and any attached loads into electricity. However, such a type of regenerative braking can only slow but not stop the vehicle because there is too little energy to excite the motor acting as a generator at low speeds. Therefore, this paper presents a unique flywheel-based regenerative braking system for railway vehicles. This system is supposed to meet high safety and comfort expectations in all operating conditions. The braking action control of this system should allow braking of empty or loaded vehicles according to load, the anti-blockage braking action of wheels and prevent wheel-slide during braking or wheel slip during acceleration. The new regenerative braking system under development, like any kinetic energy recovery system, requires the application of continuously variable transmission. The essence of the new solution is to design and build this type of variable transmission using only one planetary gear controlled through the powertrain control module for an electric motor cooperating concurrently. This paper describes complete modelling and simulation realisation on a closed-loop servomotor drive, which cooperates with the variable transmission of the regenerative braking system based on the Scilab/Xcos environment.
Rocznik
Strony
52--59
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechatronics, Kazimierz Wielki University, ul. Kopernika 1, 85-074 Bydgoszcz, Poland
Bibliografia
  • 1. Spiryagin M, Cole C, Sun YQ, McClanachan M, Spiryagin V, McSweeney T. Design and simulation of rail vehicles. Boca Raton: CRC press; 2014.
  • 2. Latto L. Regenerative braking systems in rail applications [Internet]. 2014 [cited 2022 June 20]. Available from: https://connectorsupplier. com/regenerative-braking-systems-rail-applications/.
  • 3. Kapetanović M, Vajihi M, Goverde RM. Analysis of hybrid and plug-In hybrid alternative propulsion systems for regional diesel-electric multiple unit trains. Energies. 2021; 14(18): 5920. Available from: https://doi.org/10.3390/en14185920.
  • 4. Duffner F, Mauler L, Wentker M, Leker J, Winter M. Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics. 2021; 232: 107982. Available from: https://doi.org/10.1016/j.ijpe.2020.107982.
  • 5. Şahin Y. Recent progress in processing of tungsten heavy alloys. Journal of Powder Technology. 2014; Hindawi Publishing Corporation. Article ID 764306. Available from: http: //dx.doi.org /10.1155/ 2014/764306.
  • 6. Morant S. Flywheel technology generates energy efficiencies for metros. International Railway Journal [Internet]. 2017 [cited 2022 June 20]. Available from: https://www.railjournal.com/in_depth/ flywheel-technology-generates-energy-efficiencies-for- metros/.
  • 7. Khodaparastan M, Mohamed A. Flywheel vs. supercapacitor as wayside energy storage for electric rail transit systems. Inventions. 2019; 4(4): 62.
  • 8. Qu X, Tian L, Li J, Lou C, Jiang T. Research on charging and discharging strategies of regenerative braking energy recovery system for metro flywheel. In: 3rd Asia energy and electrical engineering symposium (AEEES). IEEE. 2021: 1087-1095.
  • 9. Meishner F, Sauer DU. Wayside energy recovery systems in DC urban railway grids. ETransportation. 2019; 1: 100001.
  • 10. VYCON. Vycon - the proven flywheel energy storage system for rail [Internet]. 2017 [cited 2022 June 20]. Available from: https://vyconenergy.com/2017/03/13/vycon-showcases-flywheel-energy-storage-system-for-metro-rail-power-regeneration-at-asia-pacific-rail-expo/.
  • 11. Read M. Flywheel energy storage systems for rail. Doctoral dissertation. London: Imperial College; 2011.
  • 12. Zhang JW, Wang YH, Liu GC, Tian GZ. A review of control strategies for flywheel energy storage system and a case study with matrix converter. Energy Reports. 2022; 8: 3948-3963.
  • 13. Wu Q, Li Y, Dan P. Optimization of urban rail transit station spacing for minimizing passenger travel time. Journal of Rail Transport Planning & Management. 2022; 22: 100317. Available from: https://doi.org/ 10.1016/j.jrtpm.2022.100317.
  • 14. Brenna M, Foiadelli F, Zaninelli D. Electrical railway transportation systems. Hoboken, New Jersey: Wiley; 2018.
  • 15. Sardar A, Dey RK, Muttana SB. A deep dive into kinetic energy recovery systems—Part 1. Auto Tech Review. 2015; 4(6): 20-25.
  • 16. Sardar A, Dey RK, Muttana SB. A deep dive into kinetic energy recovery systems—Part 2. Auto Tech Review. 2015; 4(7): 20-24.
  • 17. Faulhaber. DC-Motors with integrated Electronics. Technical information [Internet]. 2022 [cited 2022 June 20]. Available from: www.faulhaber-group.com.
  • 18. Arnaudo K, Karaivanov DP. Planetary gear trains. Boca Raton: CRC Press; 2019.
  • 19. Machowski J, Lubosny Z, Bialek JW, Bumby JR. Power system dynamics: stability and control. Hoboken: Wiley; 2020.
  • 20. Emadi, A. (Ed.). Handbook of automotive power electronics and motor drives. Boca Raton: CRC press; 2017.
  • 21. Teach tough concepts: Closed-loop control with LabVIEW and a DC motor [Internet]. 2020 [cited 2022 June 20]. Available from: https: //knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHx8CAG&l=en-US.
  • 22. Dorf RC, Bishop RH. Modern control systems. 14th ed. Harlow: Pearson Education; 2022.
  • 23. Jackiewicz J. Optimal control of automotive multivariable dynamical systems. In: Awrejcewicz J, editor. Dynamical systems theory and applications. Cham: Springer; 2017. p. 151–168.
  • 24. Zhai W. Vehicle–track coupled dynamics: theory and applications. Singapore: Springer; 2020.
  • 25. Powell, JP, Palacín R. Passenger stability within moving railway vehicles: Limits on maximum longitudinal acceleration.Urban Rail Transit. 2015; 1(2): 95-103.
  • 26. Jackiewicz J. Coupler force reduction method for multiple-unit trains using a new hierarchical control system. Railway Engineering Science. 2021; 29: 163-182. Available from: https: //link.springer.com/article/ 10.1007/s40534-021-00239-w.
  • 27. Jackiewicz, J. Modeling the longitudinal dynamics of electric multiple units with Xcos/Scilab software. In: IOP conference series: Materials science and engineering. 2021; 1199(1): 012066. Available from: https://iopscience.iop.org/article/ 10.1088/1757-899X/1199/1/012066/ meta.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7f0cdfa-07f1-4e4e-b762-ddbec4aaef92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.