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Calculations of the hydrodynamic pressure distribution in the slide bearing gap occur most often on the
basis of ready-made computer programs based on CFD methods or one’s own calculation procedures based
on various numerical methods. The use of one’s own calculation procedures and, for example, the finite
difference method, allows one to include in the calculations of various additional non-classical effects on the
lubricant (e.g., the influence of the magnetic field on ferrofluid, the influence of pressure or temperature on
viscosity changes, non-Newtonian properties of lubricant or various non-classical models of dynamic viscosity
changes). The aim of the authors’ research is to check how large the differences in results may be obtained
using the two most frequently used methods of solving a Reynolds type equation. In this work, the authors
use the small parameter method and the method of subsequent approximations to determine the distribution
of hydrodynamic pressure. For numerical calculations, the finite difference method and our own calculation
procedures and Mathcad 15 software were used. With both methods, identical conditions and parameters were
assumed and the influence of pressure and temperature on viscosity change was taken into account. In the
hydrodynamic pressure calculations, a laminar flow of the lubricating liquid and a non-isothermal lubrication
model of the slide bearing were adopted. The classic Newtonian model was used as a constitutive equation.
A cylindrical-type slide bearing of finite length with a smooth pan with a full wrap angle was accepted for
consideration. In the thin layer of the oil film, the density and thermal conduction coefficient of the oil were
assumed to remain unchanged.

metoda malego parametru, metoda kolejnych przyblizen, rownanie typu Reynoldsa, sita nosna, sita tarcia,
wspolczynnik tarcia, ci$nienie hydrodynamiczne.

Obliczanie rozktadu cisnienia hydrodynamicznego w szczelinie tozyska $lizgowego nastgpuje najczesciej na pod-
stawie gotowych programéow komputerowych opartych na metodach CFD lub wtasnych procedur obliczeniowych
opartych na r6znych metodach numerycznych. Zastosowanie wtasnych procedur obliczeniowych i np. metody r6z-
nic skonczonych pozwala na uwzglgdnienie w obliczeniach r6znych dodatkowych nieklasycznych oddziatywan na
czynnik smarujacy (np. pola magnetycznego na ferrociecz, wptywu ci$nienia lub temperatury na zmiang lepkosci,
wlasciwosci nienewtonowskich czynnika smarujacego, roznych nieklasycznych modeli zmian lepko$ci dynamicz-
nej). Celem badan autordéw jest sprawdzenie, jak duze réznice w wynikach uzyskuje si¢, stosujac dwie czesto wy-
korzystywane metody rozwigzywania rownania typu Reynoldsa. W niniejszej pracy autorzy wykorzystuja metode
matego parametru oraz metodg kolejnych przyblizen w celu wyznaczenia rozktadu cisnienia hydrodynamicznego.
Do obliczen numerycznych wykorzystano metode réznic skonczonych, wlasne procedury obliczeniowe oraz opro-
gramowanie typu Mathcad 15. Przy obu metodach stosuje si¢ identyczne warunki i parametry oraz uwzglednia si¢
wplyw ci$nienia i temperatury na zmiang lepkosci. W obliczeniach ci$nienia hydrodynamicznego przyj¢to lami-
narny przeplyw cieczy smarujacej oraz nieizotermiczny model smarowania tozyska §lizgowego. Jako rownanie
konstytutywne zastosowano klasyczny model newtonowski. Do rozwazan przyjeto walcowe tozysko Slizgowe
o skonczonej dtugosci z gltadka panewka o pelnym kacie opasania. W cienkiej warstwie filmu olejowego przyjeto
niezmienno$¢ gestosci 1 wspolezynnika przewodzenia ciepta oleju od temperatury.
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INTRODUCTION

The load carrying capacity in the slide bearing balances
the load of bearing from external forces. It is determined
on the basis of hydrodynamic pressure distribution.
The hydrodynamic pressure is determined by various
numerical methods [L. 1-4]. We have the ability to
use many ready-made computer programs to perform
the numerical calculations for standard classic sliding
bearing lubrication conditions (ANSYS CFD, Numeca,
Fluent, Autodesk Simulation CFD or others). The most
popular methods of numerical calculations are based on
one of the following: finite elements, finite volumes,
or boundary elements [L. 4-7]. One can also use the
finite difference method for calculations. Each of these
methods has its own advantages and disadvantages. The
main disadvantage of ready-made programs is that one
cannot usually introduce unconventional elements into
moment equations or one’s own models of dynamic
viscosity changes. Appropriate methods for solving
partial differential equations and our own calculation
procedures allow one to eliminate these inconveniences.

The value of hydrodynamic pressure is influenced,
among others, by the height of the lubrication gap,
dimensions of the bearing, changes in dynamic viscosity,
bearing operating conditions, including angular velocity
[L. 8-10]. Changes in dynamic viscosity are affected by
pressure, temperature, and shear rates as well as the life
time of a given lubricant [L. 8-10]. Taking into account
changes in viscosity to changes in hydrodynamic pressure
is very difficult, because there are functions of dynamic
viscosity depending on the pressure or temperature in
the equations of momentum and equations of energy.
The solution to this problem requires the use of the
small parameter method or the method of subsequent
approximations. Both methods simplify the system of
equations to some extent.

The method of successive approximations assumes
the determination in the first computational step of the
distributions of hydrodynamic pressure and temperature
for a constant and is independent of dynamic viscosity.
In subsequent calculation steps, changes in dynamic
viscosity depending on, e.g., hydrodynamic pressure or
temperature in the form of a matrix of values based on
previously determined (in the previous calculation step)
values of pressure and temperature that are assumed.
The calculation is repeated until the convergence of the
results.

The method of the small parameter consists in the
fact that the functions of hydrodynamic pressure, velocity
vector components and temperature in momentum
equations, stream continuity, and energy equations are
introduced interchangeably in a uniformly convergent
power series developed in relation to successive powers
of small dimensionless parameters [L. 9, 10].

The functions of the dynamic viscosity of the
lubricant, depending on the pressure or temperature,

should also be expanded into a series relative to the
dimensionless small parameters. Basically, the small
parameter method disengages a non-linear system of
partial differential equations, forming several linear
systems of equations. The first system of equations
allows determining flow parameters for classic non-
isothermal Newton lubrication without taking into
account the influence of pressure and temperature on
the change of the viscosity of the lubricant. The other
systems of equations allow determining, the so-called
“correction of velocity vector,” hydrodynamic pressure,
and temperature components resulting from taking into
account the effect of pressure or temperature on changing
the dynamic viscosity of the lubricant. Additionally,
this method allows isolating and then analysing the
influence of temperature, hydrodynamic pressure, and
non-Newtonian properties on the values of operating
parameters.

In this paper, the authors use the small parameter
method and the next approximation method to
determine the hydrodynamic pressure distribution and
then the carrying capacity, friction force, and friction
coefficient. For numerical calculations, the finite
difference method, our own calculation procedures,
and Mathcad 15 software were used. Both methods use
identical conditions and parameters, and the influence of
pressure and temperature on viscosity change is taken
into account.

The aim of the authors’ research is to check how large
are the differences in results obtained using two frequently
used methods of solving a Reynolds type equation.

ANALITYCAL CALCULATIONS

In order to determine the distribution of hydrodynamic
pressure and then the carrying capacity, the equations
of the conservation of the momentum, stream
continuity, and energy conservation were estimated
and dimensioned. The calculations were made for the
classical case of stationary non-isothermal lubrication
with Newtonian oil. Equations of the conservation of the
momentum, stream continuity, energy conservation, and
functions of viscosity changes and some characteristic
numbers take the following form [L. 8-10]:

o=_%+§l{n%} (1
0=% )
AIICAC I 1%—0 )

w0 T



ISSN 0208-7774

TRIBOLOGIA 4/2018 57

2p o Y 1 (ov,)
Loin|| 20|+ 22 |=0 5)
or; oty L7\ on
M Ean(Tl)r]lp(pl)’ nlp(¢az)=eg'p°'p‘ =e™, ©
nip(,2,6) = € ST 0T
RUn € 3 Uzn
= . y=—=10"", =¢-p,, Br=——2,
pO 82 \V R gp g pO KOTO
Qp, = BI‘TOST , T=Ty+T,BrT,, p=pepi, ™
b
vo=Uvy, v,=Uyv,, v, =—V;, L =—,
0 1 YV L » MR

0<r;<h¢; = 1 + A-cosd + a,z;-cosd, 0<O<Py, —1<z,<+1

where Br — dimensionless Brinkman’s number,
L, — dimensionless length of bearing,
Q,, — dimensionless coefficient of viscosity

changes depends on temperature,

R - radius of journal [m],
T, — dimensional value of temperature [K],
T, — dimensionless value of temperature,

U=w - R — dimensional value of peripheral
velocity [m-s™],

a, - misalignment factor,

2b — length of bearing [m],

h, — dimensionless total height of the
lubrication gap,

p, — dimensional characteristic value of
hydrodynamic pressure [Pa],

p, — dimensionless hydrodynamic pressure
value,

r, — dimensionless radial coordinate,

z, — dimensionless longitude coordinate,

y — angle of misalignment,

5. — dimensional material factor taking into

account viscosity changes from the
temperature T [K!],

¢ =R’- R — radial clearance [m],

¢ — dimensional material piezo-factor of
viscosity [Pa],

S ~ dimensionless material piezo-factor of
viscosity,

n,, — dimensionless dynamic viscosity
depended on pressure p,,

N,; — dimensionless dynamic viscosity
depended on temperature T ,

n, — dimensional value of dynamic viscosity
forT=T;p=p,; [Pas],

K, — dimensional heat transfer coefficient of
lubricant [W-m™-K],

K, — dimensionless heat transfer coefficient of
lubricant,

A =00’/e — relative eccentricity,

p, — dimensional value of density of lubricant
[kg'm~],

p, — dimensionless value of density of
lubricant,

v — dimensionless value of radial relative
clearance,

® — angular velocity of journal [s'].

Integrating Equations (1) and (3) twice and
assuming that the changes in dynamic viscosity relative
layer thickness are insignificant under classic boundary
conditions, we get two components of the velocity
vector. Then, by integrating once the stream continuity
Equation (4) and applying the appropriate boundary
condition for the radial component on the pivot, the
third component of the velocity vector can be obtained.
Applying the second boundary condition for the radial
component on the bearing, a Reynolds type equation is
obtained, based on which the hydrodynamic pressure
distribution will be determined [L. 8-101]:

hzl [apl ] [apl J 26% )
¢ ob L1 aZ1 Nip | 97 ob

Assuming as before that the dynamic viscosity
relative the thickness of the lubricant layer does not
change and by integrating Equation (5) twice and
then using the classic boundary conditions, we can
obtain a dimensionless temperature distribution in the
following form [L. 9, 10]:

1
T, (11,4.2) =1+5m(1—25)—q10h015 +
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where s =1 /h | and 0<s<+1, 0<¢<2r, —1<z <+1.

Assuming s = 1, Formula (9) gives an unknown
function of the temperature distribution on the pan flp
depending on both the angle of wrap and the length of
the bearing.

In the case of a journal slide bearing lubricated
with Newtonian oil, the dimensional carrying capacity
of the bearing C, is determined from the known formula
[L. 8-10]:

Cs =C5 -bR, 0/ y? (10)

And the dimensionless value of carrying capacity

of he bearing C,_ may be calculated from the following
dependence [L. 8-10]:

2

+ [ e L
Cy= [I [Ipl cosysin¢d¢szJ+['[[Ipl COSY oS dq)]dzJ an
1.0 -1\ 0

where symbol g means angle of misalignment.
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The total dimensional friction force Fr; and the
total dimensionless friction force Fr, in the gap of the
journal sliding bearing show the following dependencies
[L. 8-10]:

Fry = Fri -bRn,0/y (12)
+1 | o
0
FF1=I Iml de |dz =
1|o o =h
- =01 (13)
+1 | 27 +1 | o
oV, v
:J. I[’h . J do dzl+.[ f{m—p] do|dz,
2 on
- 0 rl:hpl - 0 rl:hpl

In Equation (13), the peripheral component of
the velocity vector v, is separated into the pressure-
dependent part v » and a part dependent on the rotational
movement of the journal v, .

The method of subsequent approximations

In the case of the method of subsequent approximations,
Equations (8) and (9) can be used directly without
special transformations. In the first computational step,
it is assumed in these equations that the dimensionless
dynamic viscosity n, is constant and equal to 1. After
determining the pressure and temperature from the first
calculation step, the obtained values are inserted into the
viscosity function in Equations (8) and (9). Next, the
corrected hydrodynamic pressures are determined and
then are substituted into Equation (9). The calculations
are repeated in the next calculation steps.

The small parameter method

In order to apply the small parameter method, we
should introduce the uniform convergent power series
developed in relation to successive powers of small
dimensionless parameters into the system of Equations
(1)-(6) [L.9,10]:
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The above mentioned series are multiplied by
using the Cauchy method, and then equated with the
coefficients with the same power of small parameters
Q,, and G, In this way, successive systems of partial

differential equations can be obtained. Based on these
systems, unknown functions and their corrections should
be determined.

The equations based on which the hydrodynamic
pressure distributions and its adjustments were
determined, and they are as follows [L. 9, 10]:
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Where pl(o) — dimensionless hydrodynamic pressure
without taking into account changes in
dynamic viscosity,

pl((l)) — dimensionless  pressure  correction

resulting from consideration of viscosity
changes with temperature,

pl(ll) — dimensionless  pressure  correction

resulting from consideration of viscosity
changes with pressure,

vl(o) — dimensionless peripheral component
of velocity vector without taking into
account changes in dynamic viscosity,
dimensionless longitudinal component
of velocity vector without taking into
account changes in dynamic viscosity,
TI(O) — dimensionless temperature without taking

into account changes in dynamic viscosity.
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The functions, on the basis of which the temperature
distributions and their corrections were determined are
as follows [L. 9, 10]:

1
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Substituting  the

P =p" +0spl) +5 ppﬁ) to Equation (11) and then

developing it into the Taylor series, surrounded by zero
values of small parameters, we obtain the appropriate
formulas for the carrying capacity and the correction of
the carrying capacity [L. 9-11]:

hydrodynamic  pressure

G =C" +0;.Cf +5,C1Y 24)

The total dimensional friction force Fr, or the total
dimensionless friction force Fr, in the gap of the journal
sliding bearing presents the following relationship [L. 9, 10]:

Frs, = Fry-bRn,0/y =
0 | 1 (25)
= (PO + 0y, P+, P )-bRn, @

The dimensionless friction force for classic
Newtonian oil and the correction of the friction force
resulting from taking into account changes in dynamic
viscosity from temperature and pressure are determined
on the basis of the following dependencies [L. 9—11]:
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-1 1 -1] 0

Different integration ranges for the velocity

. 1
components depending on the pressure (vl(g) , vl((l])p,vl(l)p)

and rotational motion of the journal ("1(3) , VI(IO)S , Vl(ll)s) in

the Equations (26) - (28) were used.

0

0 +1 | @ avl(i)

J do e+ [ [Ing—2|  do & (8)
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n=h, -1 r=h

+1| ¢ ) +1| 27
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Frl(ll) = I J-[Uu; 6_11] do dz; = I I s
0 i n=h

14 =p1

The total coefficient of friction and correction of
the coefficient of friction were determined from the
following formulas [L. 9, 10]:

Fry |:Frl(0) + 03, Friy) +6,Fiy) + De, Fr" +0( 03, ) +0(s7 )} bR, |y

ﬂj _ P _
vl (€040, ¢ +6,6) + D,V +0(03,)+0(<2)] b7

29)

(0) O] )
=[5j +QB,,[ﬁj +gp[ﬂj +0(Qy,)+0( ) +0(Q5,)+ 0(03, )+ O(53)

1 L) Vi

() [ Fr® +0,, Fﬁm

RESULTS OF NUMERICAL CALCULATIONS

In the analytical and numerical calculations, laminar
flow of the lubricating liquid and the non-isothermal
lubrication model of the slide bearing were adopted.
A cylindrical slide bearing of finite length with a smooth
pan with a full wrap angle was also accepted for
consideration. It was assumed that the density and thermal
conduction coefficient of the oil to remain unchanged
from temperature and pressure in the thin layer of the oil
film. Numerical calculations of hydrodynamic pressure
and lifting force, friction force, and friction coefficient
were made for relative eccentricity from A = 0.1 to
A = 0.9 and dimensionless bearing length L, =1/4 and
L, =1 and the angle between the shaft axis and the axis
vy = 0. Numerical calculations were made using the
Mathcad 15 program using our own calculation
procedures. Both methods use the same calculation
grid with dimensions of 20x50 points (50 points around
the perimeter, 20 points on the longitudinal direction).
Reynolds boundary conditions were used to determine
the hydrodynamic pressure. In order to calculate the
values of small parameters and dimensional quantities,
the following values of coefficients and characteristic
dimensional physical quantities were adopted: angular
velocity of journal ® = 400 s, characteristic dimensional
value of dynamic viscosity h = 0.01546 Pas, dimensionless
value of radial relative clearance y = 0.002, radius of
journal R = 0.020 m, dimensional heat transfer coefficient

(0) (0) a0
A (v/ j 0) n7’
1 CI(O) K 10 Qp, '|:C1 +05.Ciy J

O [FO 4 Fr®
v

nog, -[Cl(o) +ng1(})}

of lubricant k = 0.15 W/mK, dimensional material factor
taking into account viscosity changes from the temperature
8T = 0.04267 K'!, dimensional material factor taking
into account viscosity changes from the pressure
¢ = 0.87 - 10® Pa’', dimensionless heat flow reaching
into the journal q, = -0.5, characteristic dimensional
value of temperature T = 363 K, small parameter
including corrections of pressure impact G, = 0.01345,
small parameter including corrections of temperature
impact Q, = -0.28146, and a dimensional characteristic
value of hydrodynamic pressure p, = 1.546 - 10°
Pa. The characteristics of changes of dimensionless
carrying capacity for the above data are shown in Fig.
1, dimensionless values of friction force are shown in
Fig. 2, while the friction coefficient is shown in Fig. 3.
When analysing the obtained values presented
in Fig. 1, it can be concluded that, for bearings with
a dimensionless bearing length L =1/4, the changes
are insignificant (1% — 8%) over the range of relative
eccentricity, while, for bearing with a dimensionless
bearing length L = 1, significant changes are observed
only for relative eccentricity A = 0.9 (64%). The large
difference in the values of the carrying capacity, for the
relative eccentricity A = 0.9, results from the adopted
exponential model of viscosity changes from pressure.
In the small parameter method, the exponential
function is linearized by assuming only the first two
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Fig. 1. Dimensionless carrying capacity as a function of
relative eccentricity for various dimensionless

bearing lengths and numerical methods
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Fig. 3. The coefficient of friction as a function of relative
eccentricity for various dimensionless bearing
lengths and numerical methods

of magnitude of 31% to 37%. Only for dimensionless

Rys. 1. Bezwymiarowa sita nosna w funkcji mimo$rodowo- Rys. 3. Umowny wspotczynnik tarcia w funkcji mimosrodo-
sci wzglednej dla réznych bezwymiarowych dlugosci wosci wzglednej dla réznych bezwymiarowych dtu-
lozyska i metod numerycznych gosci tozyska i metod numerycznych

45
LE 40 method of subsequent approximations L,=1/4
B as =-@=-: small parameter method L,=1/4 members of the Taylor series in the calculation (14), ..
=) —+— method of subsequent approximations L;=1 . .. B
5 30 —@—  small parameter method L;=1 The results obtained for the frictional forces shown
£ in Fig. 2 are significantly different. Changes in the
B |l——F——F—== whole range of relative eccentricity are of the order
s
2
a
E
-

(=T, ]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
relative eccentricity A

Fig. 2. Dimensionless friction force as a function of
relative eccentricity for various dimensionless
bearing lengths and numerical methods

bearing length L =1 and relative eccentricity A = 0.9, we
have changes of the order of 14%. When analysing the
values of the friction coefficient shown in Fig. 3, it can
be stated that the changes are large in the entire range of
relative eccentricity changes, ranging from 26% to 51%
for the assumed data.
The percentage

changes of the discussed

Rys. 2. Bezwymiarowa sita tarcia w funkcji mimosrodowosci dimensionless values are presented in Table 1. The
wzglednej dla réznych bezwymiarowych diugosei fo- values given in the table have been calculated as follows:
zyska i metod numerycznych

value in the small parameter method - value in the subsequent approximations
value in the small parameter method - 100%

Table 1. Percentage changes of the carrying capacity, friction force and coefficient of friction obtained by the method of
subsequent approximations in relation to the value of carrying capacity, friction force and coefficient of friction
obtained by the small parameter method

Tabela 1. Zmiany procentowe wartosci sity nosnej, sily tarcia i umownego wspotczynnika tarcia uzyskanych metoda kolejnych
przyblizen w stosunku do wartosci sity nosnej, sity tarcia i umownego wspoétczynnika tarcia uzyskanych metoda matego
parametru

Relative eccentricity
0.1 0.2 03 | 04 | o5 | o6 | 07 0.8 0.9
Percentage changes of carrying capacity
L1=1/4 6.90 7.94 7.48 6.47 5.54 4.21 3.00 1.01 -4.97
L1=1 13.26 13.43 5.59 4.90 3.84 2.60 2.51 -1.93 -64.12
Percentage changes of friction force
L1=1/4 36.26 36.27 36.33 36.44 36.60 36.78 36.98 37.19 36.71
L1=1 36.13 36.01 35.79 35.51 35.09 34.41 33.53 31.17 14.51
Percentage changes of friction coefficient
L1=1/4 30.76 31.02 31.50 32.17 33.04 34.01 35.21 36.90 41.17
L1=1 26.22 26.15 32.09 32.41 32.84 33.14 32.61 33.80 50.43
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OBSERVATIONS AND CONCLUSIONS

When analysing the obtained results of numerical
calculations, it can noted that significantly different
values are obtained in the case of friction forces and
friction coefficients calculated by the method of
subsequent approximations and the small parameter
method. In the small parameter method, only corrections
multiplied by small parameters in the first power were
taken into account, and the remaining corrections
were omitted. This is justified when the value of small
parameters is actually small, in the order of hundredth
parts. In case when small parameters are in the order of
tenths of parts (0.3—0.6), omitting corrections multiplied
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