PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The liquid phosphorus source for Si solar cells fabrication

Identyfikatory
Warianty tytułu
PL
Ciekły roztwór fosforu do zastosowania w procesie wytwarzania krzemowych ogniw słonecznych
Języki publikacji
EN
Abstrakty
EN
A new liquid source of phosphorus atoms (SPA), dedicated to emitter formation in Si solar cells, was elaborated on the basis of H3PO4. The important properties of this solution, that can be deposited by the spray method, make possible the formation of easily removable phosphosilicate glass (PSG) when the diffusion process is performed. The PSG formed from SPA and from conventional POCl3 source were investigated by X-ray photoelectron spectroscopy. The diffusion depth profiles were determined by a secondary ion mass spectrometry. The presented solution and technology of the n-type diffused layer formation allowed for precise shaping of the phosphorus doping profile. Relatively short diffusion process, which lasted only for 3 minutes, resulted in the sheet resistance between 30÷120 Ω/□, that is appropriate for the solar cells applications. The solar cells with the use of new donor source were produced and characterized by the current-voltage and spectral response techniques. The simple technology of the emitter fabrication from the liquid solution deposited by a spray method is expected to become more cost-competitive in major PV companies than the traditional POCl3 based technique.
PL
Celem pracy było opracowanie i zbadanie właściwości użytkowych roztworu chemicznego będącego źródłem domieszki atomów fosforu (SPA) w procesie wytwarzania emitera ogniwa słonecznego na bazie krzemu krystalicznego typu p. Jako kryterium aplikacyjne przyjęto następujące warunki: niskie koszty roztworu, możliwości jego nanoszenia metodą natrysku, realizacji procesu dyfuzji w piecu taśmowym oraz jednorodności domieszki emitera w zakresie rezystancji warstwowej od 30 do 120 Ω/□.
Rocznik
Strony
172--177
Opis fizyczny
Bibliogr. 13 poz., fig., tab.
Twórcy
autor
  • Institute of Metallurgy and Materials Science PAS, Krakow, Poland
autor
  • Institute of Catalysis and Surface Chemistry PAS, Krakow, Poland
autor
  • Stiftelsen SINTEF, Materials and Chemistry, Trondheim, Norway
autor
  • Institute of Metallurgy and Materials Science PAS, Krakow, Poland
Bibliografia
  • [1] Vais V., Mrcarica M., Braña A. F., Leo T., Fernandez J. M.: Mechanisms involved in the formation of phosphsilicate glass from a phosphoric acid dopant source. Progress in Photovoltaics: Research and Applications 19 (2011) 280÷285.
  • [2] Hoornstra J., van Strien W., Lamers M.: High throughput in-line diffusion: emitter and cell results. Proc. of the 22nd European Photovoltaic Solar Energy Conf. Milan, Italy, September 3rd÷7th (2007) 1586÷1589.
  • [3] Bultman J., Hoornstra J., Komatsu Y., Romijn I., Stassen A., Tool K.: Inline processing of crystalline silicon solar cells: the holy grail for largescale manufacturing. Photovoltaics International 3 (2009) 77÷83.
  • [4] Panek P., Drabczyk K., Zięba P.: Crystalline silicon solar cells with high resistivity emitter. Opto-Electronics Review 17 (2009) 161÷165.
  • [5] Voyer C., Biro D., Buettner T., Preu R.: Mechanisms involved in the formation of phosphosilicate glass by dehydration of sprayed phosphoric acid in an in-line diffusion furnace. Proc. of the 22nd European Photovoltaic Solar Energy Conf. Milan, Italy, September 3rd÷7th (2007) 1630÷1633.
  • [6] Bultman J., Cesar I., Geerlings B., Komatsu Y., Sinke W.: Method of emitter formation for crystalline silicon solar cells. Photovoltaics International 2 (2010) 69÷80.
  • [7] Moulder J. F., Stickle W. F., Sobol P. E., Bomben K.: Handbook of X-ray Photoelectron Spectroscopy. 2nd ed. Perkin-Elmer Corporation, Physical Electronics, Chastain (1992).
  • [8] Ebong A., Cooper I. B., Rounsaville B., Tate K., Rohatgi A., Bunkenburg B., Cathey J., Kim S., Ruf D.: High efficiency inline diffused emitter (ILDE) solar cells on mono-crystalline CZ silicon. Progress in Photovoltaics: Research and Application 18 (2010) 590÷595.
  • [9] Bentzen A., Schubert G., Christensen J. S., Svensson B. G., Holt A.: Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing. Progress in Photovoltaics: Research and Application 15 (2007) 281÷289.
  • [10] Basu P. K., Hameiri Z., Sarangi D., Cun-nusamy J., Carmona E., Boreland M. B.: 18.7% Efficient in line-diffused screen-printed silicon wafer solar cells with deep homogeneous emitter etch-back. Solar Energy Materials & Solar Cells 117 (2013) 412÷420.
  • [11] Bentzen A., Holt A.: High concentration in-diffusion of phosphorus in Si from a spray-on source. J. Appl. Physics 99 (2006) 064502.
  • [12] Basu P. K., Law F., Vinodh S., Kumar A., Richter P., Bottari F., Hoex B.: 0.4% absolute efficiency increase for inline-diffused screen-printed multicrystalline silicon wafer solar cells by non-acidic deep emitter etch-back. Solar Energy Materials & Solar Cells 137 (2015) 193÷201.
  • [13] Herguth A., Schubert G., Kaes M., Hahn G.: Investigations on the long time behavior of the metastable boron-oxygen complex in crystalline silicon. Progress in Photovoltaics: Research and Applications 16 (2008) 135÷140.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7ed5d87-575d-464b-96ec-7ae824d2f85f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.