PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of height and BMI on computer dynamic posturography parameters in women

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The human body’s posture control is a complex system of organs and mechanisms which controls the body’s centre of gravity (COG) over its base of support (BOS). Computerised Dynamic Posturography (CDP) allows for the quantitativeand objective assessment of the sensory and motor components of the body’s posture control system as well as of the integration and adaptation mechanisms in the central nervous system. The aim of this study was to assess the relationships between the body’s height and BMI on CDP results in a group of young healthy women without any clinical symptoms of balance disorders. It was found that the MS depended significantly on the height and BMI of the subjects as well as on the SOT conditions. As the height and BMI increased the MS value decreased. The postural response latency (LC) in the MCT statistically significantly depended only on height and showed a positive correlation. The postural response latency increased with height. The postural response amplitude for both right and left lower limbs significantly depended on height and BMI, but only for the backward movement of the platform. The response amplitude for all platform translations under all MCT conditions increased with height and BMI. The body’s resultant imbalance caused by the platform perturbations in the ADT were greater in shorter people and those with a lower BMI.
Słowa kluczowe
Rocznik
Strony
53--58
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
  • Department of Biophysics, Medical University of Lublin, Poland
  • Department of Human Anatomy, Medical University of Lublin, Poland
autor
  • Department of Otolaryngology and Laryngeal Oncology, SPSK-4, Lublin, Poland
autor
  • Department of Biophysics, Medical University of Lublin, Poland
  • Department of Applied Mathematics and Informatics, Scientific University of Lublin, Poland
Bibliografia
  • [1] BALOGUN J.A., AJAYI L.O., ALAWALE F., Determinants of single limb stance balance performance, Afr. J. Med. Sci., 1997, 26(3–4), 153–157.
  • [2] BŁAŻKIEWICZ M., Muscle force distribution during forward and backward locomotion, Acta of Bioengineering and Biomechanics, 2013(15), 3, 3–9.
  • [3] BRAY G.A., Overweight is risking fate. Definition, classification, prevalence, and risks, Ann. N.Y. Acad. Sci., 1987, 499, 14–28.
  • [4] CARNEIRO J.A., SANTOS-PONTELLI T.E., VILACA K.H., PFRIMER K., COLAFEMINA J.F., CARNEIRO A.A., FERRIOLLI E., Obese elderly women exhibit low postural stability: a novel threedimensional evaluation system, Clinics (Sao Paulo), 2012, 67(5), 475–481.
  • [5] CHAUDHRY H., BUKIET B., JI Z., FINDLEY T., Measurement of balance in computer posturography: Comparison of methods – A brief review, J. Bodyw. Mov. Ther., 2011, 15, 82–91.
  • [6] ERA P., SCHROLL M., YTTING H., GAUSE-NILSSON I., HEIKKINEN E., STEEN B., Postural balance and its sensorymotor correlates in 75-years-old men and women: a crossnational comparative study, J. Gerontol. a. Biol. Sci. Med. Sci., 1996, 51(2), M53–63.
  • [7] FARALDO-GARCÍA A., SANTOS-PÉREZ S., CRUJEIRAS-CASAIS R., LABELLA-CABALLERO T., SOTO-VARELA A., Influence of age and gender in the sensory analysis of balance control, Eur. Arch. Otorhinolaryngol., 2012, 269, 673–677.
  • [8] GANDELMAN-MARTON R., ARLAZOROFF A., DVIR Z., Ocular dominance and balance performance in healthy adults, Gait Posture, 2010, 31, 394–396.
  • [9] GOULDING A., JONES I.E., TAYLOR R.W., PIGGOT J.M., TAYLOR D., Dynamic and static tests of balance and postural sway in boys: effects of previous wrist bone fractures and high adiposity, Gait and Posture, 2003, 17, 136–141.
  • [10] GREVE J., ALONSO A., BORDINI A.C. CAMANHO G.L., Correlation between body mass index and postural balance, Clinics (Sao Paulo), 2007, 62(6), 717–720.
  • [11] HUE O., SIMONEAU M., MARCOTTE J., BERRIGAN F., DORE J., MARCEAU P., TREMBLAY A., TEASDALE N., Body weight is a strong predictor of postural stability, Gait Posture, 2007, 26(1), 32–38.
  • [12] IWAŃSKA D., URBANIK C., The sense of position and movement in the knee joint during voluntary movements, Acta of Bioengineering and Biomechanics, 2013, 15(3), 11–17.
  • [13] KU P.X., ABU OSMAN N.A., YUSOF A., WAN ABAS W.A., The effects on human balance of standing with toe-extension, PLoS One, 2012, 7(7), e41539.
  • [14] LIAW M.Y., CHEN C.L., PEI Y.C., LEONG C.P., LAU Y.C., Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people, Chang Gung. Med. J., 2009, 32, 297–304.
  • [15] NASHNER L.M., Adapting reflexes controlling the human posture, Exp. Brain. Res., 1976, 26, 59–72.
  • [16] NASHNER L.M., Practical Biomechanics and Physiology of Balance, [in:] G.P. Jacobson, C.W. Newman, J.M. Kartush (ed.), Handbook of balance function testing, Mosby YearBook, St. Louis 1993a, 261–279.
  • [17] NASHNER L.M., Computerized Dynamic Posturography, [in:] G.P. Jacobson, C.W. Newman, J.M. Kartush (ed.), Handbook of balance function testing, Mosby Year-Book, St. Louis 1993b, 280–307. [18] NASHNER L.M., Computerized Dynamic Posturography: Clinical Applications, [in:] G.P. Jacobson, C.W. Newman, J.M. Kartush (ed.), Handbook of balance function testing, Mosby Year-Book, St. Louis 1993c, 308–334.
  • [19] NeuroCom International. Balance Manager Systems. Clinical Interpretation Guide. NeuroCom International, Inc., Clakamas (Or), 2008a.
  • [20] NeuroCom International. Balance Manager Systems. Clinical Operations Guide. NeuroCom International, Inc., Clakamas (Or), 2008b.
  • [21] OLIVEIRA C.B., MEDEIROS Í.R.T., GRETERS M.G., FROTA N.A.F., LUCATO L.T., SCAFF M., CONFORTO A.B., Abnormal sensory integration affects balance control in hemiparetic patients within the first year after stroke, Clinics (Sao Paulo), 2011, 66, 2043–2048.
  • [22] PIECHA M., KRÓL P., JURAS G., SOBOTA G., POLAK A., BACIK B., Acta of Bioengineering and Biomechanics, 2013, 15(3), 29–35.
  • [23] ROBILLARD R., PRINCE F., BOISSONNEAULT M., FILIPINI D., CARRIER J., Effects of increased homeostatic sleep pressure on postural control and their modulation by attentional resources, Clin. Neurophysiol., 2011, 122, 1771–1778.
  • [24] SHEPARD N.T., SOLOMON D., RUCKENSTEIN M., STAAB J., Evaluation of the Vestibular (Balance) System, [in:] J.B. Snow, J.J. Ballenger (ed.), Ballenger’s Otorhinolarygnology Head and Neck Surgery, BC Decker Inc., Hamilton, Ontario 2003, 161–194.
  • [25] TSANG W.W., HUI-CHAN C.W., Effects of exercise on joint sense and balance in elderly men, Med. Sci. Sports Exerc., 2004a, 36(4), 658–667.
  • [26] TSANG W.W., HUI-CHAN C.W., Effect of 4- and 8 wk intensive Tai Chi Training on balance control in elderly, Med. Sci. Sports Exerc., 2004b, 36(4), 648–657.
  • [27] WOLFSON L., WHIPPLE R., DERBY C.A., AMERMAN P., NASHNER L., Gender differences in the balance of healthy elderly as demonstrated by dynamic posturography, J. Gerontol., 1994, 49, 160–167.
  • [28] WU E., JI L., JIN D., PAI Y., Minimal Step Length Necessary for Recovery of Forward Balance Loss with a Single Step, J. Biomech., 2007, 40, 1559–1566.
  • [29] YANG F., ANDERSON F.C., PAI Y.C., Predicted threshold against backward balance loss in gait, J. Biomech., 2007, 40, 804–811.
  • [30] YANG F., ANDERSON F.C., PAI Y.C., Predicted threshold against backward balance loss following a slip in gait, J. Biomech., 2008, 41, 1823–1831.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7e0f778-09f7-40be-9ab8-e518b7a13a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.