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A NEW TOLERANCE MODEL OF VIBRATIONS 
OF THIN MICROPERIODIC CYLINDRICAL 
SHELLS 

The objects of consideration are thin linearly elastic Kirchhoff-Love-type circular 
cylindrical shells having a micro-periodic structure in circumferential direction 
(uniperiodic shells). At the same time the shells have constant structure in axial di-
rection. The aim of this contribution is to formulate and discuss a new non-
asymptotic averaged model for the analysis of selected dynamic problems for these 
shells. This, so-called, general tolerance model is derived by means of a certain 
extended version of the known tolerance modelling of micro-heterogeneous media. 
This version is based on a new notion of weakly slowly-varying functions. Contrary 
to the starting exact shell equations with highly oscillating, non-continuous and pe-
riodic coefficients, governing equations of the tolerance model have constant coef-
ficients depending also on a period of inhomogeneity. Hence, the model makes it 
possible to investigate the effect of a cell size on the global shell dynamics (the 
length-scale effect). The differences between the general tolerance model proposed 
here and the corresponding known standard tolerance model derived by means of 
the more restrictive concept of slowly-varying functions are discussed. 

Keywords: uniperiodic shells, mathematical modelling, weakly slowly-varying 
functions, dynamic problems, length-scale effect 

1. Introduction 

Thin linearly elastic Kirchhoff-Love-type cylindrical shells with a periodi-
cally micro-inhomogeneous structure in circumferential direction (uniperiodic 
shells) are analysed, cf. Fig. 1. At the same time, the shells have constant struc-
ture in axial direction. 

The properties of such shells are described by highly oscillating and non-
continuous periodic functions, so the exact equations of the shell theory are too 
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complicated to apply to investigations of engineering problems. To obtain aver-
aged equations with constant coefficients, various approximate modelling proce-
dures for shells of this kind have been proposed. Periodic cylindrical shells 
(plates) are usually described using homogenized models derived by means of 
asymptotic methods, cf. [1, 2]. Unfortunately, in the models of this kind the ef-
fect of a cell size (called the length-scale effect) on the overall shell behaviour is 
neglected. 

In order to analyse the length-scale effect in dynamic or/and stability prob-
lems, the new averaged non-asymptotic models of thin cylindrical shells with 
a periodic micro-heterogeneity either along two directions tangent to the shell 
midsurface (biperiodic structure) or along one direction (uniperiodic structure) 
have been proposed and discussed by Tomczyk in a series of publications and 
summarized as well as extended in [3]. These, so-called, tolerance models have 
been obtained by applying the non-asymptotic tolerance averaging technique, cf. 
[4, 5]. This technique based on the concept of tolerance relations between points 
and real numbers related to the accuracy of the performed measurements and 
calculations. The tolerance relations are determined by the tolerance parameters. 
Some applications of this method to the modelling of mechanical and thermo-
mechanical problems for various periodic structures are shown in many works. 
The extended list of papers and books on this topic can be found in [3, 4, 5]. 
Governing equations of the tolerance models have coefficients which are con-
stant or slowly varying and depend on a cell size. 

 

 

Fig. 1. Example of uniperiodic cylindrical shell 

Rys. 1. Przykład walcowej powłoki uniperiodycznej 

The aim of this contribution is to formulate and discuss a new mathematical 
non-asymptotic model for the analysis of selected dynamic problems for the uni-
periodic shells under consideration. This model, called the general tolerance 
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model, will be derived applying a certain extended version of the known tolerance 
modelling technique. This version, proposed by Tomczyk & Woźniak in [6], is 
based on a new concept of weakly slowly-varying functions which is a certain ex-
tension of the well-known concept of slowly-varying functions, cf. [4, 5]. 

The differences between the general model proposed here and the corre-
sponding known standard model presented in [3] and derived by means of the 
more restrictive notion of slowly-varying functions will be discussed. 

Moreover, we will compare the general tolerance model formulated here 
with the general combined asymptotic-tolerance model presented by Tomczyk in 
[7]. This model is derived by applying the combined modelling which includes 
two techniques: the consistent asymptotic modelling procedure given by Woźni-
ak in [5] and the extended tolerance modelling technique based on the concept 
of weakly slowly-varying functions, cf. [6]. These two techniques are combined 
together into a new combined modelling procedure. 

2. Formulation of the modelling problem 

We assume that 1x  and 2x  are coordinates parametrizing the shell midsur-
face M in circumferential and axial directions, respectively. We denote 

),0( 1
1 Lxx ≡Ω∈≡  and ),0( 2

2 Lx ≡Ξ∈≡ξ , where 21,LL  are length dimen-

sions of M, cf. Fig. 1. Let 321 xxxO  stand for a Cartesian orthogonal coordinate 

system in the physical space 3R  and denote ),,( 321 xxx≡x . A cylindrical shell 

midsurface M is given by ( ) ( ){ }Ξ×Ω∈=∈≡ 21213 ,,,: xxxxRM rxx , where 

)(⋅r  is the smooth function such that 021 =∂∂⋅∂∂ xx /r/r , 111 =∂∂⋅∂∂ xx /r/r , 

122 =∂∂⋅∂∂ xx /r/r . It means that on M we have introduced the orthonormal 
parametrization. 

Sub- and superscripts ,,βα … run over 2,1  and are related to 21,xx , sum-

mation convention holds. Partial differentiation related to αx  is represented by 

α∂ . Moreover, it is denoted δαδα ∂∂≡∂ ...... . Let αβa  stand for the midsurface 

first metric tensor. Under orthonormal parametrization αβa  is the unit tensor. 
The time coordinate is denoted by ],[10 ttt ≡Ι∈ . Let )(xd  and r  stand for the 
shell thickness and the midsurface curvature radius, respectively. 

The basic cell ∆  and an arbitrary cell )(x∆  with the centre at point ∆Ω∈x  

are defined by means of: ]2/,2/[ λλ−≡∆ , ,)( ∆+≡∆ xx  ∆Ω∈x , 

})(:{ ∆∆ Ω⊂∆Ω∈≡Ω xx , where λ  is a cell length dimension in 1xx ≡ -
direction, cf. Fig. 1. The microstructure length parameter λ  satisfies conditions: 

,1/ max >>λ d  1/ <<λ r  and 1/L1 <<λ . 
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Setting ]2/,2/[1 λλ−∈≡ zz , we assume that the cell ∆  has a symmetry 
axis for 0=z . It is also assumed that inside the cell the geometrical, elastic and 
inertial properties of the shell are described by even functions of argument z. 

Denote by ),,( txuu ξ= αα , ),,( txww ξ= , Ι×Ξ×Ω∈ξ ),,( tx , the shell dis-
placements in directions tangent and normal to M , respectively. Elastic proper-

ties of the shell are described by stiffness tensors )(xDαβγδ , )(xBαβγδ . Let 

)(xµ  stand for a shell mass density per midsurface unit area. Let ),,( txf ξα , 
),,( txf ξ  be external forces per midsurface unit area, respectively tangent and 

normal to M. 
The considerations are based on the well-known Kirchhoff-Love theory of 

thin elastic shells, cf. [8]. It is assumed that the behaviour of the shell under con-
sideration is described by the action functional determined by lagrangian L being 
a highly oscillating function with respect to x and having the well-known form 
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Applying the principle of stationary action we obtain the following system 
of Euler-Lagrange equations 
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Combining (2) with (1) we arrive finally at the explicit form of the funda-
mental equations of the shell theory under consideration 
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Equations (3) coincide with the well-known governing equations of Kirch-
hoff-Love theory of thin elastic cylindrical shells, cf. [8]. For periodic shells, 
coefficients )(),(),( xxBxD µαβγδαβγδ  of equations (3) are highly oscillating, non-
continuous and periodic functions in x . Applying the extended version of the 
known tolerance modelling technique proposed in [6], we obtain the averaged 
form of Lagrange function (1). Then, using the principle of stationary action, we 
arrive at the tolerance model equations with constant coefficients depending also 
on a cell size. To make the analysis more clear, in the next section we shall out-
line the basic concepts and the main assumptions of the tolerance modelling ap-
proach, following the monographs [5] and [6]. 
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3. Modelling concepts and assumptions 

The fundamental concepts of the extended tolerance modelling procedure 
under consideration are those of two tolerance relations between points and real 
numbers determined by tolerance parameters, weakly slowly-varying functions, 
tolerance-periodic functions, fluctuation shape functions and the averaging op-
eration. It has to be emphasized that in the classical approach we deal with not 
weakly slowly-varying but with more restrictive slowly-varying functions. 

Below, some of the mentioned above concepts are recalled. 
Let )(⋅F  be a function defined in ],0[ 1L=Ω , which is continuous, bound-

ed and differentiable in Ω  together with their derivatives up to the R-th order. 
Nonnegative integer R is assumed to be specified in every problem under con-
sideration. Note, that function F can also depend on ],0[ 2L=Ξ∈ξ  and time 

coordinate t as parameters. Let ),..,,,( 10 Rδδδλ≡δ  be the set of tolerance pa-
rameters. The first of them is related to the distances between points in Ω , the 
second one is related to the distances between values of function )(⋅F  and the 
k-th one to the distances between values of the k-th derivative of )(⋅F , Rk ,..,1= . 
A function )(⋅F  is called weakly slowly-varying of the R-th kind with respect to 

cell ∆  and tolerance parameters δ , ),( ∆Ω∈ δ
RWSVF , if and only if 

,],...,2,1

),()(and)()())[(),(( 11

02

Rk

yFxFyFxFyxyx kkk

=
∂≈∂≈⇒≈Ω∈∀

δδλ

 (4) 

where )(1 ⋅∂ Fk  stands for the k-th derivative of )(⋅F in Ω . Roughly speaking, 
weakly slowly-varying function )(⋅F  can be treated as constant on the cell. 

Let us recall that the known slowly-varying function )(⋅F , ),( ∆Ω∈ δ
RSVF , 

satisfies not only condition (4) but also the extra restriction 

.],...,2,1,0)()[( 1 RkxFx
k

k =≈∂λΩ∈∀
δ

 (5) 

An integrable and bounded function )(⋅f  defined in ],0[ 1L=Ω , which can 

also depend on Ξ∈ξ  and time coordinate t as parameters, is called tolerance-

periodic of the R-th kind with respect to cell ∆  and tolerance parameters δ , 

),( ∆Ω∈ δ
RTPf , if it can be treated (together with its derivatives up to the R-th 

order) as periodic on an arbitrary cell. 
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Let )(⋅f  be a function defined in ],0[ 1L=Ω , which is integrable and 

bounded in every cell )(x∆ , ∆Ω∈x . By the averaging of )(⋅f we shall mean 
function )(xf ><  defined by 

.,)(,)(
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≡>< ∫ xxzdzzfxf
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x

 (6) 

If )( ⋅f  is a periodic function then >< f  is constant. 

Let )(⋅h  be a λ -periodic, highly oscillating function defined in ],0[ 1L=Ω , 

which is continuous together with derivatives ,1,...,1,1 −=∂ Rkhk  and has a contin-

uous or a piecewise continuous bounded derivative hR
1∂ . Function )(⋅h will be 

called the fluctuation shape function, ),()( ∆Ω∈⋅ RFSh , if it depends on λ  as a pa-
rameter and satisfies conditions: ,,...,2,1,)(,)( 1 RkOhOh kRkR =λ∈∂λ∈ −  0>=µ< h , 
where )(⋅µ  is a shell mass density. 

The tolerance modelling is based on two assumptions. The first assumption 
is called the tolerance averaging approximation. The second one is termed 
the micro-macro decomposition. 

Let )(⋅f  be an arbitrary integrable tolerance-periodic functions defined in 

],0[ 1L=Ω  and let ),()( 1 ∆Ω∈⋅ δWSVF , ),()( 2 ∆Ω∈⋅ δWSVG . The tolerance av-
eraging approximation has the form 

.,2,1,0,)()()(
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0
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≡∂=δ+∂>=<>∂<
 (7) 

In the course of modelling, terms )(δO  will be neglected. Let us observe 
that the weakly slowly-varying functions can be regarded as invariant under av-
eraging. Let us recall that the “classical” slowly-varying functions 

),()( 1 ∆Ω∈⋅ δSVF , ),()( 2 ∆Ω∈⋅ δSVG  satisfy not only approximations (7) but 
also the extra approximate relations 
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where ),()( 1 ∆Ω∈⋅ FSh , ),()( 2 ∆Ω∈⋅ FSg . 
The second fundamental assumption, called the micro-macro decomposi-

tion, states that the displacements fields occurring in the lagrangian under con-



A new tolerance model of vibrations of thin microperiodic cylindrical shells 209 

sideration can be decomposed into unknown averaged (macroscopic) displace-
ments being weakly slowly-varying functions in periodicity direction and highly 
oscillating fluctuations represented by the known highly oscillating λ -periodic 
fluctuation shape  functions multiplied by unknown fluctuation amplitudes (mi-
croscopic variables) being weakly slowly-varying in x. 

4. Tolerance modelling 

4.1. General tolerance model equations 

The tolerance modelling procedure for Euler-Lagrange equations (2) is real-
ized in two steps. 

The first step is the tolerance averaging of lagrangian (1). To this end let us 

introduce fluctuation shape functions ),()( 1 ∆Ω∈ FSxh  and ),()( 2 ∆Ω∈ FSxg , 
Ω∈x . These functions are assumed to be known in every problem under  

consideration. They depend on λ  as parameter and have to satisfy conditions: 

)(),( 1 λ∈∂λλ∈ OhOh , )(),(),( 2
11

22
1

2 λ∈∂λλ∈∂λλ∈ OgOgOg , 
0>=µ>=<µ< gh , where )(⋅µ  is the shell mass density being a periodic func-

tion with respect to x . Taking into account that inside the cell the geometrical, 
elastic and inertial properties of the periodic shell under consideration are de-
scribed by symmetric (i.e. even) functions of argument )(xz ∆∈ , we assume that 

)(⋅h  is either even or odd function of z. This same restriction is imposed on 
function )(⋅g . 

Now, we have to introduce the micro-macro decomposition of displace-

ments ),(),,( 1 ∆Ω∈ξ δα TPtxu , ),(),,( 2 ∆Ω∈ξ δTPtxw , Ω∈x , I),( ×Ξ∈ξ t , 
which in the problem under consideration is assumed in the form 

,),,()(),,(),,(

,),,()(),,(),,(
0

0

txxgtxwtxw

txxhtxutxu

ξ+ξ=ξ

ξ+ξ=ξ ααα

W

U
 (9) 

where ),(),,(),,,( 10 ∆Ω∈ξξ δαα WSVtxtxu U , ),(),,(),,,( 20 ∆Ω∈ξξ δWSVtxWtxw . 

Functions 00 ,wuα , called macrodisplacements, and functions WU ,α , called 
fluctuation amplitudes, are the new unknowns. 

Substituting the right-hand sides of micro-macro decomposition (9) into la-
grangian (1) and then averaging the obtained result over the cell using operation 
(6) and tolerance averaging approximation (7), we arrive at function >< hgL  

called the tolerance averaging of L  in )(x∆  under micro-macro decomposition 
(9). The obtained result has the form 
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The underlined terms in (10) depend on microstructure length parameter λ . 
The second step in the tolerance modelling of starting equations (3) is to 

apply the principle of stationary action to action functional determined by aver-
aged lagrangian >< hgL . As a result we obtain the system of Euler-Lagrange 

equations for unknowns WUwu ,,, 00
αα , which explicit form can be written as 

 
• the constitutive equations 
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• the dynamic equilibrium equations 

.0)(,0)(

,0,0

22

01110

=><−+>µ<=><−+>µ<

>=<−>µ<++∂>=<+>µ<−∂
ββ

α
αβ

−αβ
αβ

α
β

αβαβ
β

fgGWghfHUah

fwNrMfuaN

ɺɺɺɺ

ɺɺɺɺ

 (13) 

In equations (11)-(13) the underlined terms depend on a cell size λ . 
Equations (11)-(13) together with micro-macro decomposition (9) consti-

tute the general tolerance model of selected dynamic problems for the micro-
heterogeneous uniperiodic shells under consideration. 

4.2. Discussion of results 

The characteristic features of the derived general tolerance model are: 
 

• In contrast to starting equations (3) with discontinuous, highly oscillating and 
periodic coefficients, the tolerance model equations (11)-(13) proposed here 
have constant coefficients depending also on a cell size (underlined terms). 
Hence, the tolerance model makes it possible to describe the effect of a period 
length on the global shell behaviour. 

• Unknown macrodisplacements 00 ,wuα  and fluctuation amplitudes WU ,α  of 
the tolerance model equations must be weakly slowly-varying functions in pe-
riodicity direction. This requirement can be verified only a posteriori and it 
determines the range of the physical applicability of the model. 
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• The number and form of boundary/initial conditions for the basic unknowns 
of the tolerance model are the same as in the classical shell theory governed 
by equations (3). 

• Decomposition (9) and hence also resulting tolerance model equations  
(11)-(13) are uniquely determined by the postulated a priori periodic fluctua-

tions shape functions ),()( 1 ∆Ω∈ FSxh , )(λ∈Oh , and ),()( 2 ∆Ω∈ FSxg , 

)( 2λ∈Og , representing oscillations inside a cell. These functions can be ob-
tained as exact or approximate solutions to certain periodic eigenvalue prob-
lems describing free periodic vibrations of the cell, cf. [3]. It means that they 
represent either the principal modes of free periodic vibrations of the cell or 
physically reasonable approximation of these modes. 

• The resulting equations involve terms with time and spatial derivatives of the 
fluctuation amplitudes. Hence, these equations describe certain time-
boundary-layer and space-boundary-layer phenomena strictly related to the 
specific form of initial and boundary conditions imposed on unknown fluctua-
tion amplitudes WU ,α . 

• After neglecting in equations (11)-(13) the underlined terms, we obtain the 
asymptotic model of the shells under consideration. This model is not able to 
describe the length-scale effect on the overall shell dynamics being independ-
ent of a cell size. It is necessary to observe that now equations 4,3)13(  for the 

fluctuation amplitudes are linear algebraic equations. 

4.3. Standard tolerance model equations 

Let us compare the general tolerance model proposed here with the corre-
sponding known standard tolerance model presented and discussed in [3], which 

was derived under assumption that the unknown functions ),,(),,,( 00 txwtxu ξξα , 

),,(),,,( txWtxU ξξα  in micro-macro decomposition (9) are slowly-varying. We 
recall that the slowly-varying functions being a subclass of the weakly slowly-
varying functions are defined by means of (4) and (5). For the slowly-varying 
functions approximate relations (7), (8) hold. 

Following [3], the standard tolerance model consists of: 
 

• micro-macro decomposition (9) in which weakly slowly-varying functions 
),(, 10 ∆Ω∈ δαα WSVu U , ),(, 20 ∆Ω∈ δWSVWw  are replaced by slowly-varying 

functions ),(, 10 ∆Ω∈ δαα SVu U , ),(, 20 ∆Ω∈ δSVWw , 

• constitutive equations (11) in which λ -depending terms γδ
αβγδ ∂>< UhD  in 

1)11( , and WgB γ
αβγ ∂>∂< 1

1 , WgB γδ
αβγδ ∂><  in 2)11(  are replaced re-

spectively by γ
αβγ ∂>< UhD 2

2  and WgB 21
21 ∂>∂< αβ , WgB 22

22 ∂>< αβ , 
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• constitutive equations (12) in which λ -depending terms 0
γαδ

αβγδ ∂>< uDh , 
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• the dynamic equilibrium equations having form of equations (13). 

It can be observed that the constitutive equations of the standard model do 
not involve derivatives of amplitude fluctuations WU ,α  with respect to argu-
ment x. It arises from tolerance relations (8), which hold for the slowly-varying 
functions. 

From comparison of both the general and the standard tolerance models it 
follows that the general model equations (11)-(13) contain a bigger number of 
terms depending on the microstructure size than the standard model equations. 
So, the general model proposed in this contribution allows us to investigate the 
length-scale effect in more detail. 

It can be observed that for the standard model, the boundary conditions for 
unknown fluctuation amplitudes WU ,α  should be defined only on boundaries 

0=ξ , 2L=ξ  whereas in the framework of the general model the boundary 

conditions for WU ,α  should be defined on all boundaries of the shell. It means 
that for open cylindrical shell, applying the general model we can investigate the 
space-boundary-layer phenomena near all boundaries of the shell whereas with-
in the standard model we can analyse these phenomena only near boundaries 

0=ξ , 2L=ξ . 

4.4. Combined asymptotic-tolerance model equations 

Let us compare the general tolerance model proposed here with the corre-
sponding general combined asymptotic-tolerance model of uniperiodic shells 
under consideration which is presented and discussed in [7]. 

In the general case, the asymptotic and tolerance modelling procedures are 
discussed independently each other. In paper [7], these two techniques are com-
bined together into a new combined modelling procedure. 

Following [7], the combined model consists of: 
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• Asymptotic (macroscopic) model equations formulated by applying the con-
sistent asymptotic procedure, cf. [5], and having constant coefficients being 
independent of a cell size. After eliminating fluctuation amplitudes ),,( txU ξα , 

),,( txW ξ  by means of ][)( 0111
1

101
1
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ηµϑ
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γδ− ∂>∂<−=  the asymptotic equations are expressed only 
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• Microscopic model equations imposed on the known solutions 00 , wuα  ob-
tained in the framework of the asymptotic model and derived by applying an 
extended version of the tolerance modelling technique, cf. [6]. Setting 

ααα += hUuu 0
0  and Wgww += 0

0 , we obtain the following form of the superim-
posed microscopic model equations 

,
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where ),(1 ∆Ω∈ δα WSVQ , ),(2 ∆Ω∈ δWSVV  are new unknown weakly slowly-

varying fluctuation amplitudes and ),()( 1 ∆Ω∈⋅ FSc , ),()( 2 ∆Ω∈⋅ FSb  are the new 
known periodic highly oscillating fluctuation shape functions. Coefficients of the 
tolerance model are constant and some of them depend on a cell size (underlined 
terms). The right-hand sides of (15), (16) are known under assumption that α0u , 

0w  have been determined in the framework of asymptotic model. 

• Decomposition of displacement fields ),,( txu ξα , ),,( txw ξ  in I×Ξ×Ω  

,),,()(),,()(),,(),,(

,),,()(),,()(),,(),,(
0

0

txxbtxWxgtxwtxw

txQxctxUxhtxutxu

ξ+ξ+ξ=ξ
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V
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where functions WwUu ,,, 00
αα  have to be obtained in the first step of combined 

modelling, i.e. in the framework of the asymptotic modelling. 

From comparison of both the general tolerance and the general combined 
asymptotic-tolerance models it follows that tolerance model equations (11)-(13) 
proposed in this contribution contain a bigger number of terms depending on the 
microstructure size than the combined model equations (14)-(16) recalled here 
following [7]. Thus, the general tolerance model proposed in this paper allows 
us to investigate the length-scale effect in more detail. 

It can be shown, that neglecting the external forces and under special condi-
tions imposed on the fluctuation shape functions we can obtain superimposed 
microscopic model equations, which are independent of the solutions obtained in 
the framework of the macroscopic model, cf. [7]. It means, that an important 
advantage of the combined model is that it makes it possible to separate the 
macroscopic description of some special problems from the microscopic de-
scription of these problems. 

5. Final remarks and conclusions 

The tolerance modelling technique based on the notion of weakly slowly-
varying function, cf. [6], is proposed as a tool to derive a new mathematical non-
asymptotic averaged model for the analysis of selected dynamic problems for 
thin cylindrical shells with micro-periodic structure in circumferential direction. 

Contrary to “exact” shell equations (3) with highly oscillating non-
continuous periodic coefficients, the tolerance model equations (11)-(13) have 
constant coefficients depending also on a cell size. Hence, this model makes it 
possible to describe the effect of a length scale on the global shell behaviour. 

The general tolerance model equations (11)-(13) formulated in this contri-
bution contain a bigger number of terms depending on the microstructure size 
than the standard tolerance model equations presented in [3], which were de-
rived applying the concept of slowly-varying function. Moreover, the tolerance 
model with the weakly slowly-varying unknowns proposed here allows us to in-
vestigate the length-scale effect in more detail than the combined asymptotic-
tolerance model formulated in [7], which was also derived using the concept of 
weakly slowly-varying function. 

The basic unknowns of the general tolerance model equations must be the 
weakly slowly-varying functions in periodicity direction. This requirement can 
be verified only a posteriori. 
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NOWY MODEL TOLERANCYJNY DO ANALIZY DRGA Ń CIENKICH 
MIKROPERIODYCZNYCH POWŁOK WALCOWYCH 

S t r e s z c z e n i e 

Przedmiotem rozważań są cienkie liniowo-sprężyste powłoki walcowe typu Kirchhoffa-
Love’a mające periodycznie mikro-niejednorodną strukturę w kierunku obwodowym. Powłoki 
takie nazywamy uniperiodycznymi. Celem pracy jest sformułowanie nowego, nieasymptotyczne-
go, uśrednionego modelu służącego do analizy wybranych zagadnień dynamiki takich powłok. 
Przedstawiony ogólny model tolerancyjny wyprowadzony jest w oparciu o pewną zmodyfikowaną 
wersję znanej techniki tolerancyjnego modelowania struktur mikro-niejednorodnych. Wersja ta 
bazuje na nowym pojęciu funkcji słabo wolno-zmiennej. W przeciwieństwie do równań wyjścio-
wych dla analizowanych powłok niejednorodnych mających współczynniki periodyczne, silnie 
oscylujące i nieciągłe, równania modelu tolerancyjnego mają stałe współczynniki. Ponadto, 
współczynniki te zależą od parametru długości mikrostruktury. Tym samym umożliwiają badanie 
efektu skali. 
 
Słowa kluczowe: powłoka uniperiodyczna, modelowanie matematyczne, funkcja słabo wolno-
zmienna, zagadnienia dynamiki, efekt skali 
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