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A NEW TOLERANCE MODEL OF VIBRATIONS
OF THIN MICROPERIODIC CYLINDRICAL
SHELLS

The objects of consideration are thin linearly &takKirchhoff-Love-type circular
cylindrical shells having a micro-periodic struauin circumferential direction
(uniperiodic shells At the same time the shells have constant stredh axial di-
rection. The aim of this contribution is to formigaand discuss a new non-
asymptotic averaged model for the analysis of setedynamic problems for these
shells. This, so-calledyeneral tolerance modé$ derived by means of a certain
extended version of the known tolerance modelliguicro-heterogeneous media.
This version is based on a new notiomefkly slowly-varying function€ontrary
to the starting exact shell equations with higtggithating, non-continuous and pe-
riodic coefficients, governing equations of theetahce model have constant coef-
ficients depending also on a period of inhomogenéience, the model makes it
possible to investigate the effect of a cell sizetloe global shell dynamicshe
length-scale effeltThe differences betweehe general tolerance modgtoposed
here and the correspondikgown standard tolerance mod#grived by means of
the more restrictive concept sibwly-varying functionare discussed.

Keywords: uniperiodic shells, mathematical modelling, weaklpwly-varying
functions, dynamic problems, length-scale effect

1. Introduction

Thin linearly elastic Kirchhoff-Love-type cylindiét shells with a periodi-
cally micro-inhomogeneous structure in circumfe@ndlirection (niperiodic
shell§ are analysed, cf. Fig. 1. At the same time, tiadls have constant struc-
ture in axial direction.

The properties of such shells are described byhhigkcillating and non-
continuous periodic functions, so the exact equataf the shell theory are too
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complicated to apply to investigations of enginegmroblems. To obtain aver-
aged equations with constant coefficients, varmpysroximate modelling proce-
dures for shells of this kind have been proposestioBlic cylindrical shells
(plates) are usually described usimgmogenized modeb¥erived by means of
asymptotic methodef. [1, 2]. Unfortunately, in the models of thimd the ef-
fect of a cell sizécalledthe length-scale effécbn the overall shell behaviour is
neglected.

In order to analyse the length-scale effect in dyicaor/and stability prob-
lems, the new averaged non-asymptotic models af ¢hlindrical shells with
a periodic micro-heterogeneity either along twcedions tangent to the shell
midsurface iperiodic structurg or along one directiorufiperiodic structurg
have been proposed and discussed by Tomczyk inies s# publications and
summarized as well as extended in [3]. These, Bedzdolerance modelbave
been obtained by applyirtge non-asymptotic tolerance averaging technjaiie
[4, 5]. This technique based on the conceptblgrance relationdetween points
and real numbers related to the accuracy of theoqmpeed measurements and
calculations. The tolerance relations are deterdhbghe tolerance parameters
Some applications of this method to the modellifignechanical and thermo-
mechanical problems for various periodic structwaes shown in many works.
The extended list of papers and books on this toprc be found in [3, 4, 5].
Governing equations of the tolerance models hawdficients which are con-
stant or slowly varying and depend on a cell size.

ézxz A -

— -~
NP s y

Ly

Fig. 1. Example of uniperiodic cylindrical shell
Rys. 1. Przyktad walcowej powtoki uniperiodycznej

The aim of this contribution is to formulate andaliss a new mathematical
non-asymptotic model for the analysis of selectathdhic problems for the uni-
periodic shells under consideration. This modelledathe general tolerance
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mode] will be derived applying a certain extended \arf the known tolerance
modelling technique. This version, proposed by Toykc& Wozniak in [6], is
based on a new conceptwéakly slowly-varying functionshich is a certain ex-
tension of the well-known concept slbwly-varying functionscf. [4, 5].

The differences betweethe general modeproposed here and the corre-
spondingknown standard modgdresented in [3] and derived by means of the
more restrictive notion aflowly-varying functionsvill be discussed.

Moreover, we will compar¢he general tolerance modé&rmulated here
with thegeneral combined asymptotic-tolerance mauekented by Tomczyk in
[7]. This model is derived by applyirnthe combined modellingrhich includes
two techniquesthe consistent asymptotic modelling procedgiken by Wdni-
ak in [5] and the extendelerance modelling techniqusased on the concept
of weakly slowly-varying functionsf. [6]. These two techniques are combined
together into a newombined modelling procedure

2. Formulation of the modelling problem

We assume that! and x? are coordinates parametrizing the shell midsur-
face M in circumferential and axial directions, respediiveWe denote

x=x'0Q=(0,L) and E=x*0==(0,L, ), where L;,L, are length dimen-
sions ofM, cf. Fig. 1. Let Ox’x?x® stand for a Cartesian orthogonal coordinate
system in the physical spaé®® and denotex = (X}, %2,%%) . A cylindrical shell
midsurfaceM is given by M E{XDR3:Y=F(xl,x2),(x1,x2)DQ XE}, where
F() is the smooth function such thaf/ax* @F/ax> =0, oF/oxt BF/oxt =1,
0F/ox*>[@T/9x* =1. It means that oM we have introducethe orthonormal
parametrization

Sub- and superscripts 3 ,., run over 1,2 and are related xE), xz, sum-
mation convention holds. Partial differentiatiomated to x* is represented by
d4. Moreover, it is denoted, 5=0,..05. Let a®® stand for the midsurface
first metric tensor. Under orthonormal paramet'rc')I;laLtao‘B is the unit tensor.

The time coordinate is denoted byl = ty f; , Uet d (x) and r stand for the

shell thickness and the midsurface curvature radgaspectively.
Thebasic cellA and an arbitrary celbh x( yith the centre at poimkJQ

are defined by means of:A=[-A R, /2] A(X)=x+A, x0Q,,
Q, ={x0Q:A(X)0Q,}, where A is a cell length dimension inx=x'-
direction, cf. Fig. 1The microstructure length paramet&r satisfies conditions:
AMdpay>>1 A/r<<landA/L;<< 1
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Setting z= z* O[-A /2,1 /2], we assume that the cell has a symmetry
axis for z=0. It is also assumed that inside the cell the geooa, elastic and
inertial properties of the shell are described \wnefunctions of argument

Denote byu, =uy (X,§,t), w=w(x,§,t), (X,§,t)0Qx=xI, the shell dis-
placements in directions tangent and normadWtorespectively. Elastic proper-
ties of the shell are described by stiffness tenddf®? (x), B*(x). Let

u(x) stand for a shell mass density per midsurface amgia. Letf® X &t )
f(x,&,t) be external forces per midsurface unit area, ms@dy tangent and
normal toM.

The considerations are based on the well-knownhKioéf-Love theory of
thin elastic shells, cf. [8]. It is assumed tha behaviour of the shell under con-
sideration is described by the action functionaéduined by lagrangiah being
a highly oscillating function with respectxand having the well-known form

L=- 1(D"‘W‘aﬁumae—,uy 42 D**wagu,, + L DM+

2 r r? (1)

+ BP9 qwd 5w —pa®Pug g —pi®) + f “ug + fw.

Applying the principle of stationary action we adibtéhe following system
of Euler-Lagrange equations

oL _6L+06L_ oL oL 0 dL _

. 20, ~fgp o=t =0, )
0(dguy) Ou, Ot AU, 0(0qpw) Ow Ot ow

Combining (2) with (1) we arrive finally at the diqit form of the funda-
mental equations of the shell theory under consitign

0p(D P9 5u,) +r 719, (D*PHw) —pa®Piy + ¢ =0,

3

r D PH95uy +04p (BYPY0, 5w) +r DM+ pvi— f =0. ®)

Equations (3) coincide with the well-known goveniequations of Kirch-
hoff-Love theory of thin elastic cylindrical shellsf. [8]. For periodic shells,
coefficients D (x), B®(x), u(x) of equations (3) are highly oscillating, non-
continuous and periodic functions . Applying the extended version of the
known tolerance modelling technigpeoposed in [6], we obtain the averaged
form of Lagrange function (1). Then, using the pijfite of stationary action, we
arrive at the tolerance model equations with constaefficients depending also
on a cell size. To make the analysis more cleathemext section we shall out-
line the basic concepts and the main assumptiotieedblerance modelling ap-
proach following the monographs [5] and [6].
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3. Modelling concepts and assumptions

The fundamental concepts of the extended toleramagelling procedure
under consideration are thosetwb tolerance relations between points and real
numbers determined by tolerance parameters, wes@lyly-varying functions,
tolerance-periodic functions, fluctuation shapediions and the averaging op-
eration. It has to be emphasized that in the classical &gpreve deal with not
weaklyslowly-varyingbut with more restrictiveslowly-varying functions.

Below, some of the mentioned above concepts aadleec

Let F() be a function defined i = [0,L,], which is continuous, bound-

ed and differentiable i) together with their derivatives up to tReth order.
Nonnegative integeR is assumed to be specified in every problem ucdar

sideration. Note, that functioR can also depend o0 = =[0,L,] and time
coordinatet as parameters. Lei=(A,9y,9;,..,0g) be the set of tolerance pa-

rameters. The first of them is related to the dists between points i@, the
second one is related to the distances betweers/aiufunctionF() and the

k-th one to the distances between values okitederivative ofF (), k =1..,R.
A function F () is calledweaklyslowly-varyingof the R-th kindvith respect to

cell A and tolerance parameteds F DWS\AQ (Q,A), if and only if
PN % K o K
(O(x y) DQ7)[(x=y) = F(x) = F(y) and 0;F(x) = 0;F(y), (4)
k=12,...,R],

where a';F O stands for theé-th derivative of F [ jn Q. Roughly speaking,
weaklyslowly-varyingfunction F () can be treated as constant on the cell.

Let us recall that the knowsiowly-varying functionF ([), F 0S¥ (Q,A),
satisfies not only condition (4) but also the exastriction

(DxDQ)[A‘aiF(x)\iko, k=12,..R]. (5)

An integrable and bounded functign[ @gfined inQ =[0,L,], which can
also depend og 0= and time coordinateas parameters, is calléolerance-
periodic of the R-th kindwith respect to cellA and tolerance parametebs
f DTPE-,R(Q,A), if it can be treated (together with its derivaswup to thek-th
order) as periodic on an arbitrary cell.
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Let f() be a function defined irQ =[0,L;], which is integrable and
bounded in every celh x(,)x0Q, . By the averaging off ([) we shall mean
function< f > (x) defined by

1 X+A /2
<f>()== [ f(3dz zDOA(X), xOQ,. (6)
A
X—A /2
If f() is a periodic function ther f > is constant.
Let h(() be aA -periodic, highly oscillating function defined i@ = [0,L,],
which is continuous together with derivativ@$h, k = 1...,R- ahd has a contin-
uous or a piecewise continuous bounded deriva@iﬁb. Function h() will be

calledthe fluctuation shape function(JJOFSR(Q,A) , if it depends o\ as a pa-
rameter and satisfies conditionsoo(\R), akhOo(®™*), k=12..,R, <ph>=0,
wherep(D) is a shell mass density.

The tolerance modelling is based on two assumptibng first assumption
is calledthe tolerance averaging approximatioihe second one is termed
the micro-macro decomposition.

Let f () be an arbitrary integrable tolerance-periodic fioms defined in

Q=[0,L;] and let F([ﬂDWS\,g1 QA) G([ﬂDWS\,g2 (Q,A). The tolerance av-
eraging approximation has the form

<fofF >(x)=<f >0fF(x)+0(@®), R=01, oF=F,

(7
<fafG>(x)=<f >aRG(x)+0(3), R=012, 03%G=G.

In the course of modelling, tern® & (Will be neglected. Let us observe

that the weakly slowly-varying functions can beaetpd as invariant under av-
eraging. Let us recall that the “classicalSlowly-varying functions

F(DOSVA(Q,A), G(OSV (Q,A) satisfy not only approximations (7) but
also the extra approximate relations

< f 04(hF) > (x) =< f 9;h > (X)F (x) + O(9),

< £0,(9G) > (x) =< f 9,9 > (X)G(x) + O(9), (8)

< f02(gG) > (x) =< f 029 > (X)G(X) +O(3),
whereh(QIOFS! Q A), g(DOFS?(Q,A).

The second fundamental assumption, cathea micro-macro decomposi-
tion, states that the displacements fields occurrindvénlagrangian under con-
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sideration can be decomposed inttknown average@macroscopiy displace-
mentsbeingweakly slowly-varying functionis periodicity direction and highly
oscillating fluctuationsrepresented by the known highly oscillatihngperiodic
fluctuation shape functiomaultiplied by unknowrfluctuation amplitudegmi-
croscopic variablesbeingweakly slowly-varyingn x.

4. Tolerance modelling

4.1.General tolerance model equations

The tolerance modelling procedure for Euler-Lageaaguations (2) is real-
ized in two steps.
The first step ishe tolerance averaging of lagrangiéh). To this end let us

introducefluctuation shape functionk(x) JFS*(Q,A) and g(x) O Fs? QA)

xOQ . These functions are assumed to be known in epeoplem under
consideration. They depend @n as parameter and have to satisfy conditions:

hOO(), Ad;hOO), gdO(\?), Ad;,g00(?), A29,,000(?),
<ph>=<pg>=0, wherep ()is the shell mass density being a periodic func-

tion with respect tox . Taking into account that inside the cell the getioal,
elastic and inertial properties of the periodiclsbeder consideration are de-
scribed by symmetric (i.e. even) functions of argatrz JA(x), we assume that

h(l) is either even or odd function af This same restriction is imposed on
function g ().

Now, we have to introducthe micro-macro decompositioof displace-
ments U, (x,5,0) JTR Q A ), w(x,E,t)DTPBZ(Q,A), xdQ, (Euo=xlI,
which in the problem under consideration is assuiméke form

Ug (%,&,8) = U (X,&,1) + h(X)U 4 (X,&,1),

. (9)
W(x,E8) =W (X&) + g (x.&.0)

where u? (x,&,t), Uy (x,&,1) DWSV(Q,A), WP (x,E,1), W(x,E,t) OWS\Z(Q,A).

Functionsu?,w°, calledmacrodisplacementsand functiondJ,,W , called
fluctuation amplitudesarethe new unknowns

Substituting the right-hand sides of micro-macroaheposition (9) into la-
grangian (1) and then averaging the obtained reselt the cell using operation
(6) andtolerance averaging approximatiofr), we arrive at functior< Ly, >
calledthe tolerance averaging df in A(x) under micro-macro decomposition
(9). The obtained result has the form
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< Lpg > (0gud,ug,05U U g, U,U g, 00gW°, W0, 0,46W,
W W, W0 W) =

-— %[< DRV 5 %US%US +2< D%y h > aﬁuguy +

+2< D®Yh >95uq0,U,, +

+< DU (91h)2 >U U, +< DPP(h)2 >05U (94U, +

+2r H(< DM > 9gugw’ + < D9 h? > WU, +

+< D*g >9,udW +< D9, hg >U W +

+< D >9,U,w’ +< D*Fhg >9,U W) +

+r—2(< D1111> (WO)2 +2< Dllllg >WOVV+

+< Dllll(g)z >(w)2)+ < BGBV5 >aaBWan6W0 +

+2(< B, 9> 6GBWOVV +< BYPYyg >OGBWOOV5W +

+<B'°g0;,9>0,;WW) +4< B*0,9 >0,5w0,W +

+4< B¥(3,9)* >0W W+ < B (3,,9) > (W)? +

+<BP?(g)? >0,gWa W- <p>a®Pudug- <p> (W% + (10)

~<u(h)® >a®®uUg -<p(g)® >(W)*]+

0
o

+<f%>y 0

+<f%h>U +<f>w +< fg>W.
The underlined terms in (10) depend on microstmadength parametex .

The second step in the tolerance modelling of intartquations (3) is to

apply the principle of stationary action to actfonctional determined by aver-
aged lagrangiarx L, >. As a result we obtain the system of Euler-Lageang

equations for unknownsg,wo,ua W, which explicit form can be written as

- the constitutive equations

+<D®Y,h>U, +<D"PPh>o.U,,
Y Y (11)
M ap =< BGBVB S ay5W0+ < BdBllallg SW +

+2<B*™9,9 >0 W +< B*Pg >0 4V,
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HP =<8;hDPY® >95ul -~<h D >9 5u? +
+<DP(9,h)? >U, -< D" (h)% >9,4U, +
+r7(<9;hDP > w0 —<h D 59 wP +

+<9;hDPM g >W-<hD®g > W),

G=r"(<gD™ >9;ul +<9;hD"¥g>U, +

(12)

+<09,9B™P >9,,w° -2<9,gB* >9,,5 W0 +
+< B >0,5,,0" + (< (01,0)° B> +

+172<(g)* DM >)W +(2<0,,gB0g® >+

2 R 1B15 2 8
=4<(0,9)*BPY >) W + < (9)* B*P*° > 0, aW ,
 the dynamic equilibrium equations
GBNGB—<u>a“BL‘jg+< f9>=0, GGBM“B+r"1N11+<p>W°—< f>=0,

. ) (13)
<p(h)?>a®®U, +HP -< fPh>=0, <p(g)’>W+G-<fg>=0.

In equations (11)-(13) the underlined terms depmnd cell size\ .

Equations (11)-(13) together withicro-macro decompositio(@) consti-
tute the general tolerance model of selected dynamidblpros for the micro-
heterogeneous uniperiodic shells under considenatio

4.2 Discussion of results

The characteristic features of the derigetheraltolerance modeére:

« In contrast to starting equations (3) with discoatius, highly oscillating and
periodic coefficients, the tolerance model equati¢til)-(13) proposed here
have constant coefficientiepending also on a cell sifanderlined terms).
Hence, the tolerance model makes it possibtéeszribe the effect of a period
length on the global shell behaviour

« Unknown macrodisplacement:é[’,wO and fluctuation amplituded ,,W of

the tolerance model equations mustaakly slowly-varying functiona pe-
riodicity direction. This requirement can be verified ordyposterioriandit
determines the range of the physical applicabdityhe model.
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« The number and form of boundary/initial conditidos the basic unknowns
of the tolerance model are the same as in theicdhshell theory governed
by equations (3).

- Decomposition (9) and hence also resulting tolexrameodel equations
(11)-(13) are uniquely determined by the postulaeatiori periodicfluctua-

tions shape function$i(x) JFSH(Q,A), hOOWM), and g(x)OFS% Q A),

gO(N?), representing oscillations inside a cell. Thesefions can be ob-
tained as exact or approximate solutions to cepaniodic eigenvalue prob-
lems describing free periodic vibrations of thd,cefl [3]. It means that they
represent either the principal modes of free péiwibrations of the cell or
physically reasonable approximation of these modes.

« The resulting equations involve terms with time apdtial derivatives of the
fluctuation amplitudes. Hence, these equations riesccertain time-
boundary-layer and space-boundary-layer phenomsmiatly related to the
specific form of initial and boundary conditionsgosed on unknown fluctua-
tion amplitudesdJ , ,\W .

« After neglecting in equations (11)-(13) the undet terms, we obtain the
asymptotic model of the shells under considerafidris model is not able to
describe the length-scale effect on the overall slypamics being independ-
ent of a cell size. It is necessary to observe roat equations13),, for the

fluctuation amplitudes are linear algebraic equetio

4.3.Standard tolerance model equations

Let us comparghe general tolerance modploposed here with the corre-
sponding knowrstandard tolerance moderesented and discussed in [3], which
was derived under assumption that the unknown iiomsu? (x,&,t), w® ¢ £ t),
U, (X,&,t), W(X,§,t) in micro-macro decomposition (9) asewly-varying We
recall thatthe slowly-varying functionbeing a subclass dhe weakly slowly-
varying functionsare defined by means of (4) and (5). Boe slowly-varying
functionsapproximate relations (7), (8) hold.

Following [3], the standard tolerance modabnsists of:

» micro-macro decomposition (9) in whiockeakly slowly-varying functions
ul, U, OWSV(Q,4), wP, WOWSV(Q,A) are replaced byslowly-varying

functionsu?, U, DSVE(Q,4), w°, WOSVZ(Q,4),

 constitutive equations (11) in which-depending terms< D¥on > dgU, in
@1),, and <B*®,g> oW, < BoFYg > 0, eW in (1), are replaced re-
spectively by < D*®?h>9,U, and <B*?%,g>0,W, <B®?g>a,W,
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+ constitutive equations (12) in which-depending terms< hD**¥® > uf,
<D*®P(h)?>9,U,, <hD®®'>9,w°, <hD®'g>9,W in @2, and
<hD'™g>9.U,, <0,9B"™ >9,5w°, < gB®°>9 5500,
<01,9B"° >0 W,  <(0,0)°B¥ >05W, <(9)*BPP>0,5W in
@2), are replaced respectively by hD%*¥ > 625u3, <D®?(h)%>a,0,,
<hD#1>9,n°, <hD#®1g>9,W and  <hD"?g>a,U,,
<0,9B®H>0.50°, < gB®Z>9,5m0,  <0,,0BM>0,W,

<(0,9)°BY??>0,W, <(0)?B**%2> 0,03,
- the dynamic equilibrium equations having form ofigtipns (13).

It can be observed that the constitutive equatadrtde standard model do
not involve derivatives of amplitude fluctuatiokk, ,W with respect to argu-
mentx. It arises from tolerance relations (8), whichchfdr the slowly-varying
functions.

From comparison of both the general and the standerance models it
follows that the general model equations (11)-(@&)tain a bigger number of
terms depending on the microstructure size tharsthedard model equations.
So, the general model proposed in this contributibows us to investigate the
length-scale effect in more detalil.

It can be observed that for the standard modelbtumdary conditions for
unknown fluctuation amplitude® ,,W should be defined only on boundaries

&=0, £=L, whereas in the framework of the general model ibandary
conditions forU,,W should be defined on all boundaries of the sltetheans

that for open cylindrical shell, applying the geadenodel we can investigathe
space-boundary-layer phenomemnear all boundaries of the shell whereas with-
in the standard model we can analyse these phermoowy near boundaries

§=0,¢&=1L,.
4.4 .Combined asymptotic-tolerance model equations

Let us compar¢he general tolerance modptoposed here with the corre-
spondinggeneral combined asymptotic-tolerance modgeluniperiodic shells
under consideration which is presented and disdussg].

In the general case, the asymptotic and toleraraeting procedures are
discussed independently each other. In paperléket two techniques are com-
bined together into a negombined modelling procedure

Following [7], the combined model consists of:
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« Asymptotic(macroscopit modelequationsformulated by applyinghe con-
sistent asymptotic procedyref. [5], and having constant coefficients being
independent of a cell size. After eliminating fluation amplituded), (x,&,t),

W(x,Et) by means ofU, =-(G™),[<0;nD"™ >agul +r ™ <9;hD"™ > ]
andW =-E<a,,g8"™ >9,,w°, the asymptotic equatiorse expressed only
in macrodisplacements, w°

DP9 gsul +r DR 9w - < p>a®id + £ =0,

(14)
B " 0gpyen” + 1 IDRM05Uy + r 2D+ <p>if- < f >=0,

where DiP® =< D®® > - < DM g )h > (G™),, <8;hD*P° > and
BeP® =< B > - < B®9, g > (E™) <0,,9B™ > with G, =<D*¥(9;h)*> and
E =<B"%9,,0)* >.

« Microscopic model equationgnposed on the known solutions), w® ob-

tained in the framework of the asymptotic model dedved by applying an
extended version of the tolerance modelling teammiqcf. [6]. Setting
Uy, =U2 +hU, andw, =w°+ g , we obtain the following form ahe superim-
posed microscopic model equations

< D*Pc? >0, Qs— < DMH(9,0)° > Q, —<pc® >a®Qy +< fh>=

(15)
=r™ < D™, cw, > + < D*P9,cagu,, >,

< BGBVBbZ >aa[3y6V + [2< Bﬂﬁllballb >—4< BGIBl(alb)z >]6(,BV +

N (16)
+< BM(0,0)% >V +<pb® WV - < fg > = - < BP9, ,bd gw, >
where Q, OWSV(Q,A), VOWSV(Q,A) are new unknown weakly slowly-

varying fluctuation amplitudeand c(QO FS'(Q,A) , b(DOFS?(Q,A) are thenew

knownperiodic highly oscillatindluctuation shape function€oefficients of the
tolerance model areonstantand some of themepend on a cell sizenderlined
terms). The right-hand sides of (15), (16) are kmawwder assumption thag,, ,

w, have been determined in the framework of asymptotidel.

« Decomposition of displacement fieldg (x,,t) , w(x,&,t) in Qx=x|

Ug (%,&,t) = Ug (%,&,1) + h(x)U 4 (X,&,1) + A XQy (X&),
W(x,E,t) = WO (x,&,1) + gOIW(X,E,t) + b(X)V (X,E,1),
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where functionsu?,U,,w’ W have to be obtained in the first step of combined
modelling, i.e. in the framework of the asymptatiodelling.

From comparison of both the general tolerance aerdgeneral combined
asymptotic-tolerance models it follows that tolemodel equations (11)-(13)
proposed in this contribution contain a bigger namtif terms depending on the
microstructure size than the combined model eguat{@4)-(16) recalled here
following [7]. Thus, the general tolerance modebgmsed in this paper allows
us to investigate the length-scale effect in mataitl

It can be shown, that neglecting the external ®ered under special condi-
tions imposed on the fluctuation shape functionscare obtain superimposed
microscopic model equations, which are independetite solutions obtained in
the framework of the macroscopic model, cf. [7]méans, thaan important
advantage of the combined model is that it makgmsssible to separate the
macroscopic description of some special problemesnfithe microscopic de-
scriptionof these problems

5. Final remarks and conclusions

The tolerance modelling technique based on theomaif weakly slowly-
varying function cf. [6], is proposed as a tool to derive a nevitramatical non-
asymptotic averaged model for the analysis of sstiedynamic problems for
thin cylindrical shells with micro-periodic structuin circumferential direction.

Contrary to “exact” shell equations (3) with highlyscillating non-
continuous periodic coefficients, the tolerance elcefjuations (11)-(13) have
constant coefficients depending also on a cell. $itence, this model makes it
possibleto describe the effect of a length scale on the glshall behaviour

The general tolerance model equatiqid)-(13) formulated in this contri-
bution contain a bigger number of terms dependimghe microstructure size
thanthe standard tolerance model equatigaresented in [3], which were de-
rived applying the concept allowly-varying functionMoreover, the tolerance
model withthe weakly slowly-varyingnknownsproposed here allows us to in-
vestigate the length-scale effect in more detahtthe combined asymptotic-
tolerance modeformulated in [7], which was also derived using toncept of
weakly slowly-varying function

The basic unknowns of the general tolerance maogighteons must béhe
weakly slowly-varying functioni& periodicity direction. This requirement can
be verified onlya posteriori
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NOWY MODEL TOLERANCYJNY DO ANALIZY DRGA N CIENKICH
MIKROPERIODYCZNYCH POWLOK WALCOWYCH

Streszczenie

Przedmiotem rozwa sa cienkie liniowo-spgzyste powloki walcowe typu Kirchhoffa-
Love’a majce periodycznie mikro-niejednorogrstruktue w kierunku obwodowym. Powioki
takie nazywamyuniperiodycznymiCelem pracy jest sformutowanie nowego, nieasyrgpiote-
go, wrednionego modelu stycego do analizy wybranych zagadnidynamiki takich powtok.
Przedstawionypg6iny model tolerancyjnywyprowadzony jest w oparciu o peyvemodyfikowan
wersg znanej techniki tolerancyjnego modelowania struktikro-niejednorodnych. Wersja ta
bazuje na nowym pegiu funkcji stabo wolno-zmiennejVv przeciwigstwie do réwna wyjscio-
wych dla analizowanych powtok niejednorodnych goggh wspotczynniki periodyczne, silnie
oscylupce i niecijgte, rébwnania modelu tolerancyjnego majtate wspoétczynniki. Ponadto,
wspotczynniki te zaley od parametru dtugei mikrostruktury. Tym samym unibwiaja badanie
efektu skali.

Stowa kluczowe: powtoka uniperiodyczna, modelowanie matematycfuekcja stabo wolno-
zmienna, zagadnienia dynamiki, efekt skali
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