PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Densification and mechanical behavior of β-tricalcium phosphate bioceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-size β-tricalcium phosphate powders with average grain size of 80 nm were prepared by the wet chemical precipitation method with calcium nitrate and di-ammonium hydrogen phosphate as calcium and phosphorus precursors, respectively. The precipitation process employed was also found to be suitable for the production of sub-micrometre β-TCP powder in situ. The sinterability of the nano-size powders, and the microstructure, mechanical strength of the prepared β-TCP bioceramics were investigated. Bioceramic sample characterization was achieved by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and density measurements. Powders compacted and sintered at 800, 900, 1000 and 1100 °C showed an increase in relative density from 70 % to 93 %. The results revealed that the maximum hardness of 240 HV was obtained for β-TCP sintered at 1100 °C.
Rocznik
Strony
37--49
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., wz.
Twórcy
  • Construction and Mining Department, Standard Research Institute, Karaj, Iran
  • Department of Materials Engineering, Malek-e-ashtar University of Technology, Isfahan, Iran
  • Department of Materials Engineering, Malek-e-ashtar University of Technology, Isfahan, Iran
Bibliografia
  • [1] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998).
  • [2] A. Ravaglioli, A. Krajewski, Bioceramics: Materials, Properties and Applications, Chapman and Hall, London, 1992.
  • [3] K.D. Groot, C.P.A.T. Klein, J.G.C. Wolke, J.M.A. Blieck-Hogervorst, Chemistry of Calcium Phosphate Bioceramics, in: T. Yamamuro, L.L. Hench, J. Wilson (Eds.), Handbook of Bioactive Ceramics, Vol. 2, Calcium Phosphate and Hydroxylapatite Ceramics, CRC Press, Boca Raton, FL, (1990), pp. 3-16.
  • [4] D. Bernache-Assollanta, A. Ababoua, E. Championa, M. Heughebaert, Journal of the European Ceramic Society 23 (2003) 229-241.
  • [5] F.C. Driessens, J.W. Van Dijk, J.M. Borggreven, Calcif. Tissue Res. 26 (1978) 127.
  • [6] N. Kivrak, A. C. Tas., J. Am. Ceram. Soc. 81 (1998) 2245-2252.
  • [7] M. Jarcho, R.L. Salsbury, M.B. Thomas, R.H. Doremus, J. Mater. Sci. 14 (1979) 142.
  • [8] B. Mirhadi, B, Mehdikhani, N. Askari, Processing and Application of Ceramics 5(4) (2011).
  • [9] K. de Groot, Ceram. Int. 19(5) (1993) 363-366.
  • [10] S. Metsger, T.D. Driskell, J.R. Paulsrud, J. Am. Dent. Assoc. 105 (1982) 1035-1038.
  • [11] K. Lin, J. Chang, J. Lu, W. Wu, Y. Zeng, Ceram. Int. 33 (2007) 979-985.
  • [12] J.S. Bow, S.C. Liou, S.Y. Chen, Biomater. 25 (2004) 3155-3161.
  • [13] F. Zhang, K. Lin, J. Chang, J. Lu, C. Ning, J. Eur. Ceram. Soc. 28 (2008) 539-545.
  • [14] H.H. Horch, R. Sader, C. Pautke, A. Neff, H. Deppe, A. Kolk, International Journal of Oral and Maxillofacial Surgery 35 (8) (2006) 708-713.
  • [15] U.W. Jung, H.I. Moon, C. Kim, Y.K. Lee, C.K. Kim, S.H. Choi, Current Applied Physics 5 (5) (2005) 507-511.
  • [16] M. Yoneda, H. Terai, Y. Imai, T. Okada, K. Nozaki, H. Inoue, S. Miyamoto, K. Takaoka, Biomaterials 26 (25) (2005) 5145-5152.
  • [17] M. Sous, R. Bareille, F. Rouais, D. Clement, J. Amedee, B. Dupuy, C. Baquey, Biomaterials 19 (23) (1998) 2147-2153.
  • [18] P. Miranda, E. Saiz, K. Gryn, A.P. Tomsia, Acta Biomaterialia 2(4) (2006) 457-466.
  • [19] P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, Journal of Biomedical Materials Research Part A 85A (1) (2008) 218–227.
  • [20] H.S. Ryu, H.J. Youn, K.S. Hong, B.S. Chang, C.K. Lee, S.S. Chung, Biomaterials 23(3) (2002) 909-914.
  • [21] R. Famery, N. Richard, P. Boch, Ceramics International 20(5) (1994) 327-336.
  • [22] K. Itatani, T. Nishioka, S. Seike, F.S. Howell, A. Kishioka, M. Kinoshita, Journal of the American Ceramic Society 77 (3) (1994) 801-805.
  • [23] Rahaman M.N., Ceramic Processing. Boca Raton: Taylor & Francis; 2007.
  • [24] Huang J., Pan Y., Shao C.Y., J Mater Sci. 28 (2003) 1049-1056.
  • [25] S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, I. Sopyan, Journal of materials processing technology 206 (2008) 221 230.
  • [26] M.J. Mayo, in: G.M. Chow, N.I. Noskova, Nanostructured (Eds.), Materials Science Technology, NATO ASI Series, Kluwer Academic Publishers, Russia, 1997, pp. 361-385.
  • [27] J.R. Groza, Nanosintering, Nanostruct. Mater. 12 (1999) 987-992.
  • [28] Dj. Veljovic, B. Jokic, I. Jankovic-Castvan, I. Smiciklas, R. Petrovic, Dj. Janackovic, Key Eng. Mater. 330-332 (2007) 259-262.
  • [29] Y.W. Gua, K.A. Khora, P. Cheang, Biomaterials 25 (2004) 4127-4134.
  • [30] C.Y. Tang, P.S. Uskokovic, C.P. Tsui, Dj. Veljovic, R. Petrovic, Dj. Janackovic, Ceram. Int. 35 (2009) 2171-2178.
  • [31] L.A. Azaroff, Elements of X-ray Crystallography, McGraw-Hill, New York, 1968, pp. 38-42.
  • [32] C. Biqin, Z. Zhaoquan, Z. Jingxian, L. Qingling, J. Dongliang, Mater. Sci. Eng. C, 28 (2008) 1052-1056.
  • [33] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Biomater. 23 (2002) 1065-1072.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7dc995f-a9a1-4875-957e-d721c986b76e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.