Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, for the first time, the geometrical interpretation of fractional strain tensor components is presented. In this sense, previous considerations by this author are shown in a new light. The fractional material and spatial line elements concept play a crucial role in the interpretation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
671--674
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
Bibliografia
- 1. Atanackovic T.M., Stankovic B., 2009, Generalized wave equation in nonlocal elasticity, Acta Mechanica, 208, 1/2, 1-10
- 2. Carpinteri A., Cornetti P., Sapora A., 2011, A fractional calculus approach to nonlocal elasticity, European Physical Journal Special Topics, 193, 193-204
- 3. Drapaca C.S., Sivaloganathan S., 2012, A fractional model of continuum mechanics, Journal of Elasticity, 107, 107-123
- 4. Klimek M., 2001, Fractional sequential mechanics – models with symmetric fractional derivative, Czechoslovak Journal of Physics, 51, 12, 1348-1354
- 5. Lazopoulos K.A., 2006, Non-local continuum mechanics and fractional calculus, Mechanics Research Communications, 33, 753-757
- 6. Pecherski R.B., 1983, Relation of microscopic observations to constitutive modelling for advanced deformations and fracture initiation of viscoplastic materials, Archives of Mechanics, 35, 2, 257-277
- 7. Podlubny I., 2002, Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional Calculus and Applied Analysis, 5, 4, 367-386
- 8. Sumelka W., 2014a, A note on non-associated Drucker-Prager plastic flow in terms of fractional calculus, Journal of Theoretical and Applied Mechanics, 52, 2, 571-574
- 9. Sumelka W., 2014b, Application of fractional continuum mechanics to rate independent plasticity, Acta Mechanica, 255, 11, 3247-3264
- 10. Sumelka W., 2014c, Thermoelasticity in the framework of the fractional continuum mechanics, Journal of Thermal Stresses, 37, 6, 678-706
- 11. Sumelka W., Zaera R., Fernandez-S ´ aez J. ´ , 2015, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics, Meccanica, 50, 9, 2309-2323
Uwagi
EN
Short Research Communication
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7d69ae7-a388-4cb5-943c-efecbb9fd3ea