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Abstract. In this paper, we study a linear-quadratic optimal control problem with a fractional
control system containing a Caputo derivative of unknown function. First, we derive the
formulas for the differential and gradient of the cost functional under given constraints. Next,
we prove an existence result and derive a maximum principle. Finally, we describe the gradient
and projection of the gradient methods for the problem under consideration.
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1. INTRODUCTION

In this paper, we consider the following fractional linear control system{
CDα

a+x(t) = Ax(t) +Bu(t), t ∈ [a, b] a.e.,
x(a) = 0

(1.1)

with a quadratic performance index

J(u) = J1(u) + J2(u) + J3(u)

= 1
2 |xu(b)− c|2Rn + 1

2 ‖xu(·)− y(·)‖2L2 + 1
2 ‖u(·)‖2I1−α

a+ (L2) ,
(1.2)

where α ∈ ( 1
2 , 1) is a fixed number, A ∈ Rn×n, B ∈ Rn×m, n, m ∈ N, [a, b] ⊂ R, c is a

fixed vector in Rn, y : [a, b]→ Rn – a fixed function belonging to L2 = L2([a, b],Rn),
I1−α
a+ (L2) – a space of controls defined below. By CDα

a+x we denote the left Caputo
derivative of a function x : [a, b] → Rn and by xu : [a, b] → Rn – a solution of
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problem (1.1), corresponding to a control u : [a, b]→ Rm. We shall consider the above
optimal control problem in the set

AC2 = AC2([a, b],Rn) = {x : [a, b]→ Rn;x is absolutely continuous and x′ ∈ L2}

of trajectories.
Problems of such a type can be used in the examination of the pointwise and func-

tional controllabilities of systems (1.1) with taking an energy cost into consideration.
The paper is organized as follows. First, we calculate the differential and the

gradient of the functional J . Next, we prove existence of a unique optimal control and
derive a maximum principle for problem (1.1)–(1.2). Finally, we use the formula for
the gradient of J to describe the gradient and projection of the gradient methods
for the approximative solving of this problem.

Results of such a type for systems containing the classical derivative of the first
order can be found in [22] (cf. also [11] for the comprehensive study of the classical
linear-quadratic problems). The case of the fractional Riemann-Liouville derivative is
studied in [10] for J containing only the pointwise term, in the space ACα,2a+ (defined
below) of trajectories and in the space L2 of controls. The presence of the Caputo
derivative means that the problem has to be investigated in quite different (given
above) spaces of trajectories and controls.

Optimal control problems for systems of fractional order are studied for over ten
years. For the first time, fractional optimal control problems of type{

Dα
a+x(t) = G(t, x(t), u(t)),

x(a) = x0,

where Dα
a+x denotes the left Riemann-Liouville derivative, with cost functional of

integral type

I(u) =
1∫

0

F (t, x(t), u(t))dt

and without control constraints, were investigated in [2]. The author formulated the
necessary optimality conditions for such a problem and described a numerical scheme
for finding an approximative solution to such systems in the case of linear control
systems and quadratic cost functionals

I(u) = 1
2

1∫
0

(q(t)x2(t) + r(t)u2(t))dt.

Necessary optimality conditions are given in the form of a system of equations contain-
ing the Lagrange multipliers and do not contain any minimum condition. Unconstrained
problems are considered also in [5] where second order optimality conditions are derived
and in [19] where the final time is not fixed. A numerical scheme presented in [2]
is adopted from the case of positive integer order problems, given in [1]. Numerical
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schemes for fractional optimal control problems, consisting in an approximation of a
fractional derivative can be found in [3, 17, 19, 21]. These schemes lead to problems
of positive integer order. In paper [15], system (1.1) with a non-zero initial condition
and cost functional

I(u) =
1∫

0

(〈γ, x(t)〉+ g(t, u(t)))dt,

where γ ∈ Rn, is considered. Authors obtained existence of an optimal solution and
necessary optimality conditions in the form of a maximum principle.

To the best of our knowledge results presented in our paper has not been obtained
by other authors.

2. PRELIMINARIES

In all the paper we consider linear spaces over R.
Let α ∈ (0, 1). By the left Caputo derivative of order α of an absolutely continuous

function x : [a, b]→ Rn we mean the left Riemann-Liouville derivative of the function
x(·)− x(a). Of course,

CDα
a+x(t) = Dα

a+x(t)− 1
Γ(1− α)

x(a)
(t− a)α , t ∈ [a, b] a.e.,

where Dα
a+x is the left Riemann-Liouville derivative of order α of x. It is easy to see

that
CDα

a+x(t) = I1−α
a+ x′(t), t ∈ [a, b] a.e.,

where I1−α
a+ is the left Riemann-Liouville integral operator of order 1−α defined on the

space L1 = L1([a, b],Rm) of integrable functions. Indeed, if x is absolutely continuous
on [a, b], then

CDα
a+x(t) = Dα

a+(x(·)− x(a))(t) = d

dt
(I1−α
a+ (x(·)− x(a))(t)

= d

dt
(I1−α
a+ (I1

a+x
′))(t) = d

dt
(I1
a+(I1−α

a+ x′))(t) = I1−α
a+ x′(t)

for t ∈ [a, b] a.e. (we used here the fact that I1−α
a+ (I1

a+x
′) = I1

a+(I1−α
a+ x′) everywhere

on [a, b] (cf. [20, formula (2.21) and the subsequent comments])). More properties of
the fractional integrals and derivatives can be found in [20] and [16].

By ACα,2a+ = ACα,2a+ ([a, b],Rn) we denote the set of all functions x : [a, b]→ Rn of
the form

x(t) = 1
Γ(α)

c

(t− a)1−α + Iαa+ϕ(t), t ∈ [a, b] a.e.,

with c ∈ Rn, ϕ ∈ L2. One can show ([4]) that x ∈ ACα,2a+ if and only if x possesses the
left Riemann-Liouville derivative Dα

a+x ∈ L2. In such a case

I1−α
a+ x(a) = c and Dα

a+x = ϕ.
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It is easy to show that ACα,2a+ with natural operations and the scalar product

〈x, y〉 = I1−α
a+ x(a)I1−α

a+ y(a) +
b∫
a

Dα
a+x(t)Dα

a+y(t)dt

is the Hilbert space.
Similarly, by ACα,2b− = ACα,2b− ([a, b],Rn) we mean the set of all functions

x : [a, b]→ Rn of the form

x(t) = 1
Γ(α)

d

(b− t)1−α + Iαb−ψ(t), t ∈ [a, b] a.e.,

with d ∈ Rn, ψ ∈ L2, where Iαb− is the right Riemann-Liouville integral operator of
order 1− α defined on the space L1. As in the “left” case x ∈ ACα,2b− if and only if x
possesses the right Riemann-Liouville derivative Dα

b−x ∈ L2 and, in such a case,

I1−α
b− x(b) = d and Dα

b−x = ψ.

ACα,2b− with the scalar product

〈x, y〉 = I1−α
b− x(b)I1−α

b− y(b) +
b∫
a

Dα
b−x(t)Dα

b−y(t)dt

is complete.
Of course, AC1,2

a+ = AC1,2
b− = AC2.

By Iαa+(L2) we denote the set {Iαa+(ϕ); ϕ ∈ L2} which is contained in ACα,2a+ . It is
clear that Iαa+(L2) with the scalar product

〈x, y〉 =
b∫
a

Dα
a+x(t)Dα

a+y(t)dt

is the Hilbert space.
In what follows, we shall use the following variant of a fractional theorem on

integration by parts.

Theorem 2.1. Let α ∈ (0, 1). If f ∈ AC2
0 = {x ∈ AC2; x(a) = 0}, g ∈ ACα,2b− ∩ L2,

then
b∫
a

f(t)Dα
b−g(t)dt = −f(b)I1−α

b− g(b) +
b∫
a

Dα
a+f(t)g(t)dt.

Proof. Since f ∈ AC2
0 , therefore (cf. [9, Theorem 6]) f ∈ ACα,1a+ and

Dα
a+f(t) = I1−α

a+ (f ′).
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So,
b∫
a

Dα
a+f(t)g(t)dt =

b∫
a

I1−α
a+ (f ′)(t)g(t)dt =

b∫
a

f ′(t)I1−α
b− g(t)dt

and
b∫
a

f(t)Dα
b−g(t)dt =

b∫
a

f(t)
(
− d

dt
I1−α
b− g

)
(t)dt

= −f(b)I1−α
b− g(b) +

b∫
a

f ′(t)I1−α
b− g(t)dt

and the proof is complete.

Using the method applied in [7] one can obtain (cf. [12]) the following result.

Theorem 2.2. If α ∈ ( 1
2 , 1), c ∈ Rn, v ∈ L2, then the problem{
Dα
a+x(t) = Ax(t) + v(t), t ∈ [a, b] a.e.,

I1−α
a+ x(a) = c

has a unique solution xv in ACα,2a+ . It is given by

xv(t) = ΦAα,α(t− a)c+
t∫
a

ΦAα,α(t− s)v(s)ds, t ∈ [a, b] a.e.,

where ΦAα,β(t) =
∑∞
k=0

Akt(k+1)α−1

Γ(kα+β) .

Remark 2.3. If c 6= 0, then condition α > 1
2 can not be omitted. Indeed, let us

consider problem {
Dα
a+x(t) = x(t), t ∈ [a, b] a.e.,

I1−α
a+ x(a) = c

If
x(t) = 1

Γ(α)
c

(t− a)1−α + Iαa+ϕ(t), t ∈ [a, b] a.e.,

where ϕ ∈ L2, is a solution to the above system, belonging to ACα,2a+ , then
x = Dα

a+x ∈ L2, Iαa+ϕ ∈ L2, and, consequently, c
(t−a)1−α ∈ L2. It means that α > 1

2 .

Similarly, we have the following theorem.

Theorem 2.4. If α ∈ ( 1
2 , 1), c ∈ Rn, v ∈ L2, then problem{
Dα
b−y(t) = Ay(t) + v(t), t ∈ [a, b] a.e.,

I1−α
b− y(b) = c

(2.1)
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has a unique solution yv ∈ ACα,2b− and it is given by

yv(t) = ΦAα,α(b− t)c+
b∫
t

ΦAα,α(s− t)v(s)ds, t ∈ [a, b] a.e. (2.2)

In particular, a unique solution y0 corresponding to control v(·) ≡ 0 is given by

y0(t) = ΦAα,α(b− t)c, t ∈ [a, b] a.e.

Remark 2.5. If c = 0, then the assumption α ∈ ( 1
2 , 1) in Theorems 2.2, 2.4 can be

replaced by α ∈ (0, 1).
Theorem 2.4 implies the following corollary.

Corollary 2.6. If α ∈ ( 1
2 , 1), then the function

[a, b] 3 t 7−→ ΦAα,α(b− t) ∈ Rn×n

belongs to L2([a, b],Rn×n).

3. REMARKS ON SYSTEM (1.1)

Let α ∈ (0, 1). From the results contained in [8, Theorem 4] it follows that if
u ∈ I1−α

a+ (L2), then there exists a unique in

AC1 = AC1([a, b],Rn) = {x : [a, b]→ Rn;x is absolutely continuous and x′ ∈ L1}

solution xu of problem (1.1). Moreover (cf. [8, Theorem 6]), the following result holds.
Lemma 3.1. If uj −→ u0 in I1−α

a+ (L2), then xj ⇒ x0 uniformly on [a, b] (here xj is
a unique solution to problem (1.1), corresponding to control uj).

Of course, a solution xu of problem (1.1) , corresponding to u ∈ I1−α
a+ (L2), is a

solution of system

Dα
a+x(t) = Ax(t) +Bu(t), t ∈ [a, b] a.e. (3.1)

Since Ax(·) +Bu(·) belongs to L2, Dα
a+xu ∈ L2, too. Using this fact and [8, Proof of

Theorem 4, formula (16)] we deduce that xu ∈ AC2. Consequently, xu ∈ AC2
0 . Thus,

if u ∈ I1−α
a+ (L2) and xu ∈ AC2 satisfies (1.1), then xu belongs to AC2

0 and satisfies
(3.1). Conversely, if u ∈ I1−α

a+ (L2) and xu ∈ AC2
0 satisfies (3.1), then xu belongs to

AC2 and satisfies (1.1).
Now, let us consider the operator

F : AC2
0 → I1−α

a+ (L2),
F (x) = Dα

a+x−Ax.

The above operator is well defined because

Dα
a+x = I1−α

a+ x′ ∈ I1−α
a+ (L2)

and
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x = I1
a+x

′ = I1−α
a+ Iαa+x

′ ∈ I1−α
a+ (Iαa+(L2)) ⊂ I1−α

a+ (L2)

for any x ∈ AC2
0 . Of course, it is linear. Moreover, since∥∥Dα
a+x

∥∥
I1−α
a+ (L2) =

∥∥I1−α
a+ x′

∥∥
I1−α
a+ (L2) = ‖x′‖L2 = ‖x‖AC2

0
,

‖x‖I1−α
a+ (L2) =

∥∥I1−α
a+ Iαa+x

′∥∥
I1−α
a+ (L2) =

∥∥Iαa+x
′∥∥
L2 ≤ d ‖x′‖L2 = d ‖x‖AC2

0

for any x ∈ AC2
0 and some d > 0, where ‖x‖I1−α

a+ (L2) =
∥∥D1−α

a+ x
∥∥
L2 , ‖x‖AC2

0
= ‖x′‖L2 ,

therefore F is bounded. From its bijectivity and from the Banach inverse mapping
theorem it follows that F is a homeomorphism.

4. GRADIENT OF THE POINTWISE TERM

Let us assume that α ∈ ( 1
2 , 1) and consider the pointwise term

J1(u) = 1
2 |xu(b)− c|2Rn , u ∈ I1−α

a+ (L2),

of functional (1.2). J1 can be written as the following superposition

u ∈ I1−α
a+ (L2) 7−→ xu ∈ AC2

0 7−→ xu(b)− c ∈ Rn 7−→ 1
2 |xu(b)− c|2Rn ∈ R. (4.1)

The interior mapping
λ : u ∈ I1−α

a+ (L2) 7−→ xu ∈ AC2
0

is linear and continuous. It follows from the fact that λ is the following superposition

u ∈ I1−α
a+ (L2) 7−→ Bu ∈ I1−α

a+ (L2) 7−→ F−1(Bu) ∈ AC2
0 .

So, the differential λ′(u) of λ at a point u ∈ I1−α
a+ (L2) is the following mapping

λ′(u) : v ∈ I1−α
a+ (L2) 7−→ hv ∈ AC2

0 ,

where hv ∈ AC2
0 is such that

Dα
a+hv(t) = Ahv(t) +Bv(t), t ∈ [a, b] a.e.

Consequently, the differential J ′1(u) of J1 at a point u ∈ I1−α
a+ (L2) is the mapping

J ′1(u) : v ∈ I1−α
a+ (L2) 7−→ (xu(b)− c)hv(b) ∈ R.

Now (cf. Theorem 2.4), let Ψ1
u ∈ AC

α,2
b− be a unique solution of problem{

Dα
b−Ψ(t) = ATΨ(t), t ∈ [a, b] a.e.,

I1−α
b− Ψ(b) = xu(b)− c.

(4.2)
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We have (cf. Theorem 2.1 and Corollary 2.6)

(xu(b)− c)hv(b) = I1−α
b− Ψ1

u(b)hv(b)

=
b∫
a

Dα
a+hv(t)Ψ1

u(t)dt−
b∫
a

hv(t)Dα
b−Ψ1

u(t)dt

=
b∫
a

(Ahv(t) +Bv(t)) Ψ1
u(t)dt−

b∫
a

hv(t)ATΨ1
u(t)dt

=
b∫
a

Ψ1
u(t)Bv(t)dt

(4.3)

and
b∫
a

Ψ1
u(t)Bv(t)dt =

b∫
a

I1−α
a+ D1−α

a+ (Bv)(t)Ψ1
u(t)dt

=
b∫
a

D1−α
a+ v(t)I1−α

b− (BTΨ1
u)(t)dt

=
b∫
a

D1−α
a+ v(t)D1−α

a+ I1−α
a+ I1−α

b− (BTΨ1
u)(t)dt

=
〈
v, I1−α

a+ I1−α
b− (BTΨ1

u)
〉
I1−α
a+ (L2) .

So,

J ′1(u)v =
b∫
a

Ψ1
u(t)Bv(t)dt =

〈
v, I1−α

a+ (BT I1−α
b− Ψ1

u)
〉
I1−α
a+ (L2) (4.4)

for v ∈ I1−α
a+ (L2) and, consequently,

∇J1(u) = I1−α
a+ (BT I1−α

b− Ψ1
u), (4.5)

where
Ψ1
u(t) = ΦA

T

α,α(b− t)(xu(b)− c) (4.6)
for t ∈ [a, b] a.e.

Now, we shall show that the gradient ∇J1 of J1 is Lipschitzian. In the proof of
this fact we shall use the integrability of the function

[a, b] 3 t 7−→
t∫
a

∣∣∣ΦATα,α(t− s)
∣∣∣2 ds ∈ R+

0 , (4.7)

proved in [10].
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We have the following result.

Theorem 4.1. Gradient ∇J1 satisfies the Lipschitz condition, i.e.

‖∇J1(u)−∇J1(w)‖I1−α
a+ (L2) ≤

(b− a)1−αL

Γ(2− α) ‖u− w‖I1−α
a+ (L2)

for u, w ∈ I1−α
a+ (L2), where

L = (2 |A|2
( b∫
a

( t∫
a

∣∣ΦAα,α(t− s)
∣∣2 ds) 1

2
dt

)2

+ 2 |B|2 (b− a)) 1
2 |B|2

∥∥I1−α
b−

∣∣ΦAα,α(b− ·)
∣∣∥∥
L2 .

(4.8)

Proof. Let us fix u, w ∈ I1−α
a+ (L2). We have

‖∇J1(u)−∇J1(w)‖I1−α
a+ (L2) =

∥∥BT I1−α
b− Ψu −BT I1−α

b− Ψw

∥∥
L2 .

In [10] it has been shown that∥∥BT I1−α
b− Ψu −BT I1−α

b− Ψw

∥∥
L2 ≤ L ‖u− w‖L2

with L given by (4.8). But (cf. [20, formula (2.72)])

‖u− w‖L2 =
∥∥I1−α
a+ D1−α

a+ u− I1−α
a+ D1−α

a+ w
∥∥
L2

≤ (b− a)1−α

Γ(2− α)
∥∥D1−α

a+ u−D1−α
a+ w

∥∥
L2 = (b− a)1−α

Γ(2− α) ‖u− w‖I
1−α
a+ (L2)

and the proof is complete.

5. GRADIENT OF THE FUNCTIONAL TERM

Let α ∈ ( 1
2 , 1) and consider the functional term

J2(u) = 1
2 ‖xu(·)− y(·)‖2L2 , u ∈ I1−α

a+ (L2),

of the functional (1.2). J2 can be written as the following superposition

u ∈ I1−α
a+ (L2) 7−→ xu ∈ AC2

0 7−→
1
2 ‖xu(·)− y(·)‖2L2 ∈ R.

It is easy to see that

J ′2(u)v =
b∫
a

(xu(t)− y(t))hv(t)dt
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for u, v ∈ I1−α
a+ (L2), where hv ∈ AC2

0 is such that

Dα
a+hv(t) = Ahv(t) +Bv(t), t ∈ [a, b] a.e.

Denoting by Ψ2
u a unique in ACα,2b− solution of problem{
Dα
b−Ψ(t) = ATΨ(t) + (xu(t)− y(t)), t ∈ [a, b] a.e.,

I1−α
b− Ψ(b) = 0

(5.1)

we obtain (cf. Theorem 2.1 and Corollary 2.6)

b∫
a

(xu(t)− y(t))hv(t)dt =
b∫
a

Dα
b−Ψ2

u(t)hv(t)dt−
b∫
a

ATΨ2
u(t)hv(t)dt (5.2)

=
b∫
a

Ψ2
u(t)Dα

a+hv(t)dt−
b∫
a

ATΨ2
u(t)hv(t)dt

=
b∫
a

Ψ2
u(t)(Ahv(t) +Bv(t))dt−

b∫
a

ATΨ2
u(t))hv(t)dt

=
b∫
a

Ψ2
u(t)Bv(t)dt.

In the same way as in the previous section

b∫
a

Ψ2
u(t)Bv(t)dt =

〈
I1−α
a+ I1−α

b− (BTΨ2
u), v

〉
I1−α
a+ (L2)

and, consequently, for u, v ∈ I1−α
a+ (L2),

J ′2(u)v =
b∫
a

Ψ2
u(t)Bv(t)dt =

〈
I1−α
a+ I1−α

b− (BTΨ2
u), v

〉
I1−α
a+ (L2) , (5.3)

∇J2(u) = I1−α
a+ I1−α

b− (BTΨ2
u), (5.4)

where Ψ2
u ∈ AC

α,2
b− is a unique solution of problem (5.1), given by

Ψ2
u(t) =

b∫
t

ΦA
T

α,α(s− t)(xu(s)− y(s))ds, t ∈ [a, b] a.e. (5.5)

We also have the following result (to calculate D3 we use integrability of func-
tion (4.7)).
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Theorem 5.1. Gradient ∇J2 satisfies the Lipschitz condition:

‖∇J2(u)−∇J2(w)‖I1−α
a+ (L2) ≤ D ‖u− w‖I1−α

a+ (L2)

for u, w ∈ I1−α
a+ (L2) and some D > 0.

Proof. We have

‖∇J2(u)−∇J2(w)‖2I1−α
a+ (L2) =

b∫
a

∣∣I1−α
b− (BT (Ψ2

u −Ψ2
w))(t)

∣∣2 dt
≤ D1

b∫
a

∣∣BT (Ψ2
u −Ψ2

w)(t)
∣∣2 dt ≤ D2

b∫
a

 b∫
t

∣∣∣ΦATα,α(s− t)(xu(s)− xw(s))
∣∣∣ ds
2

dt

≤ D2

b∫
a

 b∫
t

∣∣∣ΦATα,α(s− t)
∣∣∣2 ds

 dt

b∫
a

|(xu(s)− xw(s))|2 ds

= D3

b∫
a

|(xu(s)− xw(s))|2 ds

≤ D3

b∫
a

 s∫
a

∣∣ΦAα,α(s− t1)
∣∣2 dt1 s∫

a

|B(u(t1)− w(t1))|2 dt1

 ds

≤ D4

b∫
a

|B(u(t1)− w(t1))|2 dt1 ≤ D5

b∫
a

|(u(t1)− w(t1))|2 dt1 = D5 ‖u− w‖2L2

= D5
∥∥I1−α
a+ D1−α

a+ u− I1−α
a+ D1−α

a+ w
∥∥2
L2 ≤ D6

∥∥D1−α
a+ u−D1−α

a+ w
∥∥2
L2

= D2 ‖u− w‖2I1−α
a+ (L2)

for u, w ∈ I1−α
a+ (L2), where

D1 =
(

(b− a)1−α

Γ(2− α)

)2

, D2 = D1 |B|2 , D3 = D2

b∫
a

 b∫
t

∣∣∣ΦATα,α(s− t)
∣∣∣2 ds

 dt,

D4 = D3

b∫
a

s∫
a

∣∣ΦAα,α(s− t1)
∣∣2 dt1ds, D5 = D4 |B|2 ,

D6 = D5

(
(b− a)1−α

Γ(2− α)

)2

, D =
√
D6.

The proof is complete.
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6. GRADIENT OF THE CONTROL TERM

Let α ∈ (0, 1) and consider the control term

J3(u) = 1
2 ‖u(·)‖2I1−α

a+ (L2) , u ∈ I1−α
a+ (L2),

of the functional (1.2). It is clear that

J ′3(u)v = 〈u, v〉I1−α
a+ (L2) =

b∫
a

D1−α
a+ u(t)D1−α

a+ v(t)dt (6.1)

for u, v ∈ I1−α
a+ (L2). Consequently,

∇J3(u) = u. (6.2)

Of course,
‖∇J3(u)−∇J3(w)‖I1−α

a+ (L2) = ‖u− w‖I1−α
a+ (L2)

for u, w ∈ I1−α
a+ (L2). So, ∇J3 satisfies the Lipschitz condition with the constant 1.

7. EXISTENCE OF A SOLUTION TO (1.1)–(1.2)

Let us recall that a function J : U → R where U is a convex subset of a Hilbert space
H, is called strongly convex, if

J(γu+ (1− γ)v) ≤ γJ(u) + (1− γ)J(v)− γ(1− γ)κ ‖u− v‖2

for some κ > 0 and all γ ∈ [0, 1], u, v ∈ U . One can show (cf. [23, Lemma 4.3.1] for
the method of the proof) that J is strongly convex on U with a constant κ if and
only if function g(u) = J(u) − κ ‖u‖2 is convex on U . So, for example, functional
H 3 u 7−→ ‖u‖2 ∈ R is strongly convex with constant κ = 1.

In [22, Theorem 1.3.8] the following theorem is proved.

Theorem 7.1. If U is a convex closed subset of a Hilbert space H and a functional
J : U → R is strongly convex with a constant κ and lower semicontinuous on U , then
J∗ := infu∈U J(u) > −∞ and there exists a unique point u∗ such that J(u∗) = J∗.
Moreover, any minimizing sequence (uk) (i.e. such that J(uk)→ J∗) converges to u∗
and

‖uk − u∗‖ ≤
1
κ

(J(uk)− J∗), k = 1, 2, . . .

Now, let α ∈ (0, 1) and M ⊂ Rm be a fixed set. Consider problem (1.1)–(1.2) in
the set I1−α

a+ (L2
M ), where

L2
M = {u ∈ L2; u(t) ∈M for t ∈ [a, b] a.e.}.



On a linear-quadratic problem with Caputo derivative 61

Of course,
I1−α
a+ (L2

M ) = {u ∈ I1−α
a+ (L2); D1−α

a+ u(t) ∈M for t ∈ [a, b] a.e.}.
We have the following theorem.
Theorem 7.2. If M ⊂ Rm is a convex closed set, then there exists a unique point
u∗ ∈ I1−α

a+ (L2
M ) such that J(u∗) = J∗ := infu∈I1−α

a+ (L2
M

) J(u) and any minimizing
sequence (uk) converges to u∗ and

‖uk − u∗‖I1−α
a+ (L2) ≤ 2(J(uk)− J∗), k = 1, 2, . . .

Proof. The set I1−α
a+ (L2

M ) is convex and closed in I1−α
a+ (L2). Convexity is obvious.

To prove its closedness let us consider a sequence (uk) ⊂ I1−α
a+ (L2

M ) converging in
I1−α
a+ (L2) to some u0. Thus, the sequence (D1−α

a+ uk) converges in L2 to D1−α
a+ u0. So,

there exists a subsequence of (D1−α
a+ uk) that is converging pointwise a.e. on [a, b] to

D1−α
a+ u0. Since elements of this subsequence take their values a.e. on [a, b] in the closed

set M , therefore D1−α
a+ u0 has the same property. It means that u0 ∈ I1−α

a+ (L2
M ).

Lemma 3.1 implies continuity of J on I1−α
a+ (L2) (and, in consequence, on I1−α

a+ (L2
M )).

So, since J is strongly convex on I1−α
a+ (L2) (and, in consequence, on I1−α

a+ (L2
M )) with

the constant κ = 1
2 , therefore from Theorem 7.1 the assertion follows.

8. MAXIMUM PRINCIPLE

Let us start with the following classical result ([22, Theorem I.2.5]).
Lemma 8.1. Let U be a convex subset of a Banach space X, J – a functional of class
C1 on U . If u∗ is a global minimum point of J on U , then

J ′(u∗)u ≥ J ′(u∗)u∗ (8.1)
for any u ∈ U . If, additionally, J is convex on U , then condition (8.1) is sufficient
for u∗ to be the global minimum point of J on U .

Now, let us consider problem (1.1)–(1.2) in the set I1−α
a+ (L2

M ) with a convex set
M ⊂ Rm, in the case of α ∈ ( 1

2 , 1). We have the following theorem.

Theorem 8.2. Control u∗ is a solution to problem (1.1)–(1.2) in the set I1−α
a+ (L2

M )
if and only if

min
v∈M

(I1−α
b− ((ΦA

T

α,α(b− ·)(xu∗(b)− c) +
b∫
·

ΦA
T

α,α(s− ·)(xu∗(s)− y(s))ds)B)(t)

+D1−α
a+ u∗(t))v

= (I1−α
b− ((ΦA

T

α,α(b− ·)(xu∗(b)− c) +
b∫
·

ΦA
T

α,α(s− ·)(xu∗(s)− y(s))ds)B)(t)

+D1−α
a+ u∗(t))(D1−α

a+ u∗)(t)
for t ∈ [a, b] a.e.
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Proof. Let u∗ be a solution of problem (1.1)–(1.2) in the set L2
M . From Lemma 8.1,

formulas (4.4), (5.3), (6.1) and convexity of functional (1.2) it follows that optimality
of u∗ ∈ I1−α

a+ (L2
M ) is equivalent to the functional condition of the form

min
u(·)∈I1−α

a+ (L2
M

)

b∫
a

(Ψ1
u∗

(t) + Ψ2
u∗

(t))BI1−α
a+ (D1−α

a+ u)(t)dt+
b∫
a

D1−α
a+ u∗(t)D1−α

a+ u(t)dt

=
b∫
a

(Ψ1
u∗

(t) + Ψ2
u∗

(t))BI1−α
a+ (D1−α

a+ u∗)(t)dt+
b∫
a

D1−α
a+ u∗(t)D1−α

a+ u∗(t)dt,

where Ψ1
u∗
∈ ACα,2b− is a unique solution of problem (4.2) and Ψ2

u∗
∈ ACα,2b− is a

unique solution to problem (5.1). Both solutions are given by (2.2). Using the classical
fractional theorem on the integration by parts, in the integral form (cf. [20]), we can
write the above equality in the following form

min
u(·)∈I1−α

a+ (L2
M

)

b∫
a

(
I1−α
b−

(
(Ψ1

u∗
(·) + Ψ2

u∗
(·))B

)
(t) +D1−α

a+ u∗(t)
)

(D1−α
a+ u)(t)dt

=
b∫
a

(
I1−α
b−

(
(Ψ1

u∗
(·) + Ψ2

u∗
(·))B

)
(t) +D1−α

a+ u∗(t)
)

(D1−α
a+ u∗)(t)dt.

This condition is equivalent to

min
v(·)∈L2

M

b∫
a

(
I1−α
b−

(
(Ψ1

u∗
(·) + Ψ2

u∗
(·))B

)
(t) +D1−α

a+ u∗(t)
)
v(t)dt

=
b∫
a

(
I1−α
b−

(
(Ψ1

u∗
(·) + Ψ2

u∗
(·))B

)
(t) +D1−α

a+ u∗(t)
)

(D1−α
a+ u∗)(t)dt.

From [6, Lemma 6] it follows that the above condition is equivalent to the pointwise
minimum condition given the theorem.

9. GRADIENT METHOD

We have the following result concerning the convergence of the gradient method
([22, Theorem I.4.1]).

Lemma 9.1. Let a functional J : H → R be of class C1, bounded below and with the
gradient satisfying the Lipschitz condition. If (uk) ⊂ H is a sequence described by the
formula

uk+1 = uk − βk∇J(uk), k = 0, 1, . . . , (9.1)
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with any fixed u0 ∈ H, where parameter βk is a minimum point of the function

fk : [0,∞) 3 β 7−→ J(uk − β∇J(uk)) ∈ R, k = 0, 1, . . . ,

then the sequence (J(uk)) is nonincreasing and

lim
k→∞

‖∇J(uk)‖ = 0. (9.2)

If, additionally, J is strongly convex with a constant κ > 0, then the sequence (uk)
converges to u∗ – a unique minimum point of J and

0 ≤ J(uk)− J∗ ≤ (J(u0)− J∗)qk, (9.3)

‖uk − u∗‖2 ≤
1
κ

(J(u0)− J∗)qk, (9.4)

for k = 0, 1, . . ., where J∗ = inf
u∈H

J(u), q = 1− 2κ
L1
∈ [0, 1) (L1 is a Lipschitz constant

for ∇J).

Remark 9.2. One can show that 2κ ≤ L1 (cf. [10]).

Now, let us consider problem (1.1)–(1.2) in the set U = I1−α
a+ (L2) with α ∈ ( 1

2 , 1).
Using the above lemma we obtain

Theorem 9.3. A sequence (uk) given by (9.1) with βk described in Lemma 9.1
converges to u∗ – a unique minimum point of J on I1−α

a+ (L2), the sequence (J(uk)) is
nonincreasing and conditions (9.2), (9.3), (9.4) are satified with

L1 = (b− a)1−αL

Γ(2− α) +D + 1,

where L is given by (4.8) and D is described in the proof of Theorem 5.1.

Remark 9.4. Let us observe that

fk(β) = J(uk − β∇J(uk)) = 1
2
∣∣xuk−β∇J(uk)(b)− c

∣∣2
Rn + 1

2
∥∥xuk−β∇J(uk)(·)− y(·)

∥∥2
L2

+ 1
2 ‖uk(·)− β∇J(uk)(·)‖2I1−α

a+ (L2) = 1
2
∣∣xuk(b)− c− βx∇J(uk)(b)

∣∣2
Rn

+ 1
2
∥∥xuk(·)− y(·)− βx∇J(uk)(·)

∥∥2
L2 + 1

2 ‖uk(·)− β∇J(uk)(·)‖2I1−α
a+ (L2)

= J1(uk)− β(xuk(b)− c)x∇J(uk)(b) + 1
2β

2 ∣∣x∇J(uk)(b)
∣∣2
Rn

+ J2(uk)− β
〈
xuk(·)− y(·), x∇J(uk)(·)

〉
L2 + 1

2β
2 ∥∥x∇J(uk)(·)

∥∥2
L2

+ J3(uk)− β 〈uk(·),∇J(uk)(·)〉I1−α
a+ (L2) + 1

2β
2 ‖∇J(uk)(·)‖2I1−α

a+ (L2) .

So, if ∣∣x∇J(uk)(b)
∣∣
Rn +

∥∥x∇J(uk)(·)
∥∥
L2 + ‖∇J(uk)(·)‖I1−α

a+ (L2) = 0
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for some k, then one can put βk = 0 and, consequently, ∇J(uk) = 0. This means that
uk is a unique minimum point of J . If

∣∣x∇J(uk)(b)
∣∣
Rn +

∥∥x∇J(uk)(·)
∥∥
L2 + ‖∇J(uk)(·)‖I1−α

a+ (L2) 6= 0,

then

βk =
(xuk(b)− c)x∇J(uk)(b) +

〈
xuk(·)− y(·), x∇J(uk)(·)

〉
L2 + 〈uk(·),∇J(uk)(·)〉I1−α

a+ (L2)∣∣x∇J(uk)(b)
∣∣2
Rn +

∥∥x∇J(uk)(·)
∥∥2
L2 + ‖∇J(uk)(·)‖2I1−α

a+ (L2)

is the unique minimum point of fk. It is worth observing (cf. (4.3), (4.5), (5.4), (6.2))
that

(xuk(b)− c)x∇J(uk)(b) =
b∫
a

∣∣BT I1−α
b− Ψ1

uk
(t)
∣∣2 dt

+
b∫
a

(BT I1−α
b− Ψ1

uk
(t))(BT I1−α

b− Ψ2
uk

(t))dt+
b∫
a

(BT I1−α
b− Ψ1

uk
(t))(D1−α

a+ uk(t))dt,

where Ψ1
uk

is given by (4.6) and Ψ2
uk

– by (5.5) (with u replaced by uk). Similarly
(cf. (5.2), (4.5), (5.4), (6.2)),

〈
xuk(·)− y(·), x∇J(uk)(·)

〉
L2 =

b∫
a

∣∣I1−α
b− (BTΨ2

uk
)(t)
∣∣2 dt

+
b∫
a

(BT I1−α
b− Ψ2

uk
(t))(BT I1−α

b− Ψ1
uk

(t))dt+
b∫
a

(BT I1−α
b− Ψ2

uk
(t))(D1−α

a+ uk(t))dt

and

〈uk(·),∇J(uk)(·)〉I1−α
a+ (L2) =

b∫
a

(BT I1−α
b− Ψ1

uk
(t))(D1−α

a+ uk(t))dt

+
b∫
a

(BT I1−α
b− Ψ2

uk
(t))(D1−α

a+ uk(t))dt+
b∫
a

(D1−α
a+ uk(t))(D1−α

a+ uk(t))dt.
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So,

βk =

b∫
a

∣∣(BT I1−α
b− Ψ1

uk
(t)) + (BT I1−α

b− Ψ2
uk

(t)) + (D1−α
a+ uk(t))

∣∣2 dt
∣∣x∇J(uk)(b)

∣∣2
Rn +

∥∥x∇J(uk)(·)
∥∥2
L2 + ‖∇J(uk)(·)‖2I1−α

a+ (L2)

=
‖∇J(uk)(·)‖2I1−α

a+ (L2)∣∣x∇J(uk)(b)
∣∣2
Rn +

∥∥x∇J(uk)(·)
∥∥2
L2 + ‖∇J(uk)(·)‖2I1−α

a+ (L2)

.

10. PROJECTION OF THE GRADIENT METHOD

By PU (u) we denote the projection of a point u ∈ H on a convex closed subset U of a
Hilbert space H. We shall use the following result on the convergence of the projection
of the gradient method ([22, Theorem I.4.4]).

Lemma 10.1. Let U be a convex closed subset of a Hilbert space H and J : U → R
– a functional of class C1, bounded below and with the gradient ∇J satisfying the
Lipschitz condition with a constant L. If (uk) ⊂ H is a sequence described by the
formula

uk+1 = PU (uk − βk∇J(uk)), k = 0, 1, . . . , (10.1)

with any fixed u0 ∈ H, where βk, k = 0, 1, . . . , is such that

ε0 ≤ βk ≤
2

L+ 2ε (10.2)

(here ε0, ε are fixed positive parameters such that ε0 ≤ 2
L+2ε ), then the sequence

(J(uk)) is nonincreasing and

lim
k→∞

‖uk − uk+1‖ = 0. (10.3)

If, additionally, J is strongly convex on U , then the sequence (uk) converges to a
unique minimum point u∗ of J on U and there exists a constant c ≥ 0 such that

‖uk − u∗‖2 ≤
c

k
(10.4)

for k = 1, 2, . . .

Remark 10.2. The constant c can be calulated (cf. [22, Theorem I.4.4] and
[23, Theorem V.2.2] for the method of calculation).

Now, let us consider problem (1.1)–(1.2) with α ∈ ( 1
2 , 1) in the set I1−α

a+ (L2
M ) ⊂

I1−α
a+ (L2), where M is a convex closed subset of Rm. In the proof of Theorem 7.2 it
has been shown that I1−α

a+ (L2
M ) is a convex closed set in I1−α

a+ (L2). So, from the above
lemma and Theorem 7.2 we obtain the following result.
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Theorem 10.3. If ε0, ε > 0 are such that ε0 ≤ 2
L+2ε , where L > 0 is a Lipschitz

constant for ∇J , then the sequence (uk) given by (10.1)–(10.2) converges to u∗ –
a unique minimum point of J on I1−α

a+ (L2
M ) and condition (10.4) is satisfied. Moreover,

the sequence (J(uk)) is nonincreasing.

Remark 10.4. Let M = [n1, N1] × . . . × [nm, Nm] ⊂ Rm. In [22, Part I.4] one can
find the form of the projection PL2

M
: L2 → L2

M of the space L2 on the set L2
M . This

allows us to describe the projection PI1−α
a+ (L2

M
) : I1−α

a+ (L2)→ I1−α
a+ (L2

M ) of the space
I1−α
a+ (L2) on the set I1−α

a+ (L2
M ). Indeed, for any u ∈ I1−α

a+ (L2), we have

min
v∈I1−α

a+ (L2
M

)
‖u− v‖I1−α

a+ (L2) = min
v∈I1−α

a+ (L2
M

)

∥∥D1−α
a+ u−D1−α

a+ v
∥∥
L2

= min
f∈L2

M

∥∥D1−α
a+ u− f

∥∥
L2 =

∥∥∥D1−α
a+ u− PL2

M
(D1−α

a+ u)
∥∥∥
L2

=
∥∥∥D1−α

a+ u−D1−α
a+ I1−α

a+ (PL2
M

(D1−α
a+ u))

∥∥∥
L2

=
∥∥∥u− I1−α

a+ (PL2
M

(D1−α
a+ u))

∥∥∥
I1−α
a+ (L2)

.

So,
PI1−α

a+ (L2
M

)(u) = I1−α
a+ (PL2

M
(D1−α

a+ u))

for u ∈ I1−α
a+ (L2).
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