PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the dynamic response of deep-sea trawlers in sea trials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing use of automation in fishing vessels has improved trawling efficiency while directly affecting the fishing capacity and cost of fishing vessels. Among the various influencing factors, warp tension and warp length can be varied to automatically balance the retraction and release of warp control. We combined the two parameters and independently designed and developed the key equipment for fishing vessels—the warp dynamometer and meter counter—and control software. The accuracy of the warp tension and length measurements was improved. The designed equipment was applied to sea trials under different working conditions, and the test data records were exported. Next, filtered time-domain graphs of the required parameters were plotted through complex Fourier transform, first-order lowpass filtering, and inverse Fourier transform. The results of data processing using various parameters were compared and analysed to determine the variation trends of the parameters and verify the effects of their balance control. The results indicated that using an automatic balance control system that combines warp tension and warp length can be effective for the fishing operation of offshore double-deck trawlers. In addition, first-order low-pass filtering can be used to filter complex warp tension data. This study also determined the relationship between warp tension and experimental parameters such as warp length and ship speed during the release of control. After the balance control of warp tension and warp length, the net mouth area increased by 30.7% and 36.5%, respectively, and the fishing efficiency of the vessel improved considerably.
Słowa kluczowe
Rocznik
Tom
Strony
25--32
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang, China
autor
  • School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, Zhejiang, China
autor
  • School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai, China
  • Marine Design and Research Institute of China, Shanghai, China
autor
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, China
Bibliografia
  • 1. B. K. Cho and S. O. Cho, “A study on the bottom trawl gear by the trial of a stern trawler I - on the resistance of a bottom trawl gear,” Journal of Applied Mathematics and Informatics, 2000.
  • 2. F. X. Hu, T. Tokai and K. Matuda, “A computer simulation for the net position control of midwater trawl system,” Nippon Suisan Gakkaishi, vol. 67, no. 2, pp. 226-230, 2001.
  • 3. V. Johansen, O. Egeland and A. J. Sorensen, “Modelling and control of a trawl system in the transversal direction,” Control Applications in Marine Systems, vol. 34, no. 7, pp. 243-248, 2002. https://doi.org/10.1016/S1474-6670(17)35090-5.
  • 4. B. Cha and C. Lee, “Dynamic simulation of a midwater trawl system’s behaviour,” Fisheries Science, vol. 68, no. 2, pp. 18651868, 2002. https://doi.org/10.2331/fishsci.68.sup2_1865.
  • 5. K. J. Reite and A. J. Sorensen, “Hydrodynamic properties important for control of trawl doors,” IFAC Conference on Control Applications in Marine System (CAMS 2004), vol. 37, no. 10, pp. 143-148, 2004. https://doi.org/10.1016/ S1474-6670(17)31722-6.
  • 6. K. J. Reite, “Modeling and control of trawl systems,” Norwegian University of Science and Technology, pp. 153−192, 2006.
  • 7. J. D. M. Zand, B. J. Buckham and D. Constantinescu, “Ship and winch regulation for remotely operated vehicle’s waypoint navigation,” International Journal of Offshore and Polar Engineering, vol. 19, no. 3, pp. 214-223, 2009.
  • 8. J. H. Lee, C. W. Lee and M. Y. Choe, “Applying fishing-gear simulation software to better estimate fished space as fishing effort,” Fisheries and Aquatic Sciences, vol. 14, no. 2, pp. 138147, 2011. https://doi.org/10.5657/FAS.2011.0138.
  • 9. X. F. Sun, Modelling and simulation of single-vessel mid-level trawling system. Dalian Maritime University, 2008.
  • 10. Y. L. Chen, Modeling and control of trawling towing system. Zhejiang University, 2013.
  • 11. C. Balash, D. Sterling, J. Binns, G. Thomas and N. Bose, “The effect of mesh orientation on netting drag and its application to innovative prawn trawl design,” Fisheries Research, vol. 164, pp. 206-213, 2015. https://doi.org/ 10.1016/j. fishres.2014.11.018.
  • 12. J. Carral, L. Carral, M. Lamas and M. J. Rodriguez, “Fishing grounds’ influence on trawler winch design,” Ocean Engineering, vol. 102, pp. 136-145, 2015. https://doi.org/ 10.1016/j.oceaneng.2015.04.055.
  • 13. Z. P. Su, L. X. Xu, G. P. Zhu, Z. Wang, G. S. Hu and Y. J. Yu, “Effects of drag speed and warp length on the net position of mid-layer trawling of Antarctic krill,” China Fisheries Science, vol. 24, no. 04, pp. 884-892, 2017. https://doi.org/10.3724/ SP.J.1118.2017.16229.
  • 14. T. Juza, Z. Sajdlova, M. Cech, V. Drastik, L. Kocvara, M. Tuser and J. Kubecka, “Improved trawling setup for sampling pelagic juvenile fish communities in small inland bodies of water,” Acta Ichthyologica et Piscatoria, vol. 48, no. 1, pp. 105-108, 2018. https://doi.org/10.3750/AIEP/02373.
  • 15. S. Park and C. W. Lee, “Fuzzy control system for threedimensional towing trajectory of trawl gear,” Ocean Engineering, vol. 188, p. 106297, 2019. https://doi. org/10.1016/j.oceaneng.2019.106297.
  • 16. R. Vettor, J. Szlapczynska, R. Szlapczynski, W. Tycholiz and C. G. Soares, “Towards improving optimised ship weather routing,” Polish Maritime Research, vol. 27, no. 01, pp. 60-69, 2020. https://doi.org/10.2478/pomr-2020-0007.
  • 17. S. Gucma, “Conditions of safe ship operation in seaports - optimization of port waterway parameters,” Polish Maritime Research, vol. 26, no. 03, pp. 22-29, 2019. https://doi. org/10.2478/pomr-2019-0042.
  • 18. M. Wang, Research on filter processing of trawler towing tension measurement. Wuhan University of Technology, 2009.
  • 19. K. I. Vinay and G. P. John, Digital signal processing using MATLAB (Third Edition). Science Press, 2012.
  • 20. Z. Y. Wang, T. L. Tang, Z. Q. Xu and H. H. Ni, “Design and experiment of automatic tension control system for trawl winch on fishing boat,” Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), vol. 33, no. 1, pp. 90-94, 2017. https://www.tcsae.org/10.11975/j. issn.1002-6819.2017.01.012.
  • 21. B. T. N. Nsangue, H. Tang, A. N. Pandong, L. X. Xu, D. M. Adekunle and F. X. Hu, “Examining engineering performance of midwater trawl with different horizontal spread ratio, floatage, and weight parameters: A case study of model net for Antarctic krill fisheries,” International Journal of Naval Architecture and Ocean Engineering, vol. 14, p. 100448, 2022. https:// doi.org/10.1016/j.ijnaoe.2022.1004482092-6782.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7c83efd-8d8e-437c-8352-38bdbd41f51e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.