PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response of potato biomass and tuber yield under future climate change scenarios in Egypt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
FAO AquaCrop model ver. 6.1 was calibrated and validated by means of an independent data sets during the harvesting seasons of 2016/2017 and 2017/2018, at El Noubaria site in western north of Egypt. To assess the impact of the increase in temperature and CO2 concentration on potato biomass and tuber yield simulations, experiments were carried out with four downscaled and bias-corrected of General Circulation Models (GCMs) data sets based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5) scenarios under demonstrative Concentration Trails (RCPs) 4.5 and 8.5, selected for 2021–2040 and 2041–2060. The study showed that the model could satisfactorily simulate potato canopy cover, biomass, harvest and soil water content under various irrigation treatments. The biomass and yield decreased for all GCMs in both future series 2030s and 2050s. Biomass reduction varied between 5.60 and 9.95%, while the reduction of the simulated yield varied between 3.53 and 7.96% for 2030. The lowest values of biomass and yield were achieved by HadGEM2-ES under RCP 8.5 with 27.213 and 20.409 Mg∙ha–1, respectively corresponding to –9.95 and –7.96% reduction. The lowest reductions were 5.60 and 3.53% for biomass and yield, respectively, obtained with MIROC5 under RCP 8.5 for 2030. Reductions in biomass and yield in 2050 were higher than in 2030. The results are showing that higher temperatures shortened the growing period based on calculated growing degree days (GDD). Therefore, it is very important to study changing sowing dates to alleviate the impact of climate change by using field trials, simulation and deep learning models.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
139--150
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 33 El Buhouth St. Dokki, P.O. Box 12622, Cairo, Egypt
  • Aarhus University, Department of Agroecology, Tjele, Denmark
  • Aarhus University, Department of Agroecology, Tjele, Denmark
  • Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 33 El Buhouth St. Dokki, P.O. Box 12622, Cairo, Egypt
  • Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 33 El Buhouth St. Dokki, P.O. Box 12622, Cairo, Egypt
Bibliografia
  • ABDEL-SHAFY H.I., EL-SAHARTY A.A., REGELSBERGER M., PLAT-ZER C. 2010. Rainwater in Egypt: Quantity, distribution and harvesting. Mediterranean Marine Science. Vol. 11(2) p. 245–258. DOI 10.12681/mms.75.
  • ABEDINPOUR M., SARANGI A., RAJPUT T.B.S., SINGH M. 2014. Prediction of maize yield under future water availability scenarios using the AquaCrop model. The Journal of Agricultural Science. Vol. 152(4) p. 558–574. DOI 10.1017/S0021859 614000094.
  • AGESA B.L., ONYANGO C.M., KATHUMOV.M., ONWONGA R.N., KARUKU G.N. 2019. Climate change effects on crop production in Yatta sub-county: farmer perceptions and adaptation strategies. African Journal of Food, Agriculture, Nutrition and Development. Vol. 19(1) p. 14010–14042. DOI 10.18697/ ajfand.84.BLFB1017.
  • ANDARZIAN B., BANNAYAN M., STEDUTO P., MAZRAEH H., BARATI M.E., BARATI M.A., RAHNAMA A. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management. Vol. 100(1) p. 1–8. DOI 10.1016/j.agwat.2011.08.023.
  • ARAJI H.A., WAYAYOK A., BAVANI A.M., AMIRI E., ABDULLAH A.F., DANESHIAN J., TEH C.B.S. 2018. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management. Vol. 205 p. 63–71. DOI 10.1016/j.agwat.2018.04.023.
  • BELMANS C., WESSELING J.G., FEDDES R.A. 1983. Simulation model of the water balance of a cropped soil: SWATRE. Journal of Hydrology. Vol. 63(3–4) p. 271–286. DOI 10.1016/ 0022-1694(83)90045-8.
  • BORUS DJ. 2017. Impacts of climate change on the potato (Solanum tuberosum L.) productivity in Tasmania, Australia and Kenya. PhD Thesis. University of Sydney pp. 206.
  • DEWEDAR O.M., MEHANNA H.M., EL-SHAFIE A.F. 2019. Validation of WinSRFR for some hydraulic parameters of furrow irrigation in Egypt. Plant Archives. Vol. 19. Suppl. 2 p. 2108–2115.
  • EL-NOEMANI A.A., ABOAMERA M.A.H., DEWEDAR O.M. 2015a. Determination of crop coefficient for bean (Phaseolus vulgaris L.) plants under drip irrigation system. International Journal of ChemTech Research. Vol. 8. No. 12 p. 203–214.
  • EL-NOEMANI A.A., ABOELLIL A.A.A., DEWEDAR O.M. 2015b. Influence of irrigation systems and water treatments on growth, yield, quality and water use efficiency of bean (Phaseolus vulgaris L.) plants. International Journal of ChemTech Research. Vol. 8. No. 12 p. 248–258.
  • EL-SHAER H.M., ROSENZWEIG C., IGLESIAS A., EID M.H., HILLEL D. 1997. Impact of climate change on possible scenarios for Egyptian agriculture in the future. Mitigation and Adaptation Strategies for Global Change. Vol. 1(3) p. 233–250. DOI 10.1007/BF00517805.
  • EL-SHAFIE A.F., OSAMA M.A., HUSSEIN M.M., EL-GINDY A.M., RAGAB R. 2017. Predicting soil moisture distribution, dry matter, water productivity and potato yield under a modified gated pipe irrigation system: SALTMED model application using field experimental data. Agricultural Water Management. Vol. 184 p. 221–233. DOI 10.1016/j.agwat.2016.02. 002.
  • EL-SHAFIE A.F., MARWA M.A., DEWEDAR O.M. 2018. Hydraulic performance analysis of flexible gated pipe irrigation technique using GPIMOD model. Asian Journal of Crop Science. Vol. 10(4) p. 180–189. DOI 10.3923/ajcs.2018.180.189.
  • FAO 2016. The state of food and agriculture: Climate change, agriculture and food security [online]. Rome. Food and Agriculture Organization. ISBN 978-92-5-109374-0 pp. 173. [Access 5.03.2019]. Available at: http://www.fao.org/publications/sofa/2016/en/
  • FAOSTAT 2019. Crops [online]. Food Agriculture and Organization. [Access 15.09.2020]. Available at: http://www.fao.org/faostat/en/#data/QC
  • FARAHANI H.J., IZZI G., OWEIS T.Y. 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal. Vol. 101 p. 469–476. DOI 10.2134/agronj2008.0182s.
  • FENTA MEKONNEN D., DISSE M. 2018. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques. Hydrology and Earth System Sciences. Vol. 22 p. 2391–2408. DOI 10.5194/hess-22-2391-2018.
  • FODOR N., CHALLINOR A., DROUTSAS I., RAMIREZ-VILLEGAS J., ZABEL F., KOEHLER A.K., FOYER C.H. 2017. Integrating plant science and crop modeling: Assessment of the impact of climate change on soybean and maize production. Plant and Cell Physiology. Vol. 58(11) p. 1833–1847. DOI 10.1093/pcp/ pcx141.
  • GARDNER W.H. 1986. Water content. In: Methods of soil analysis. Part 1. Ed. A. Klute. 2nd ed. SSA Book Ser. No. 9. Agronomy. Madison, WI. American Society of Agronomy, Inc. Soil Science Society of America, Inc. p. 493–544.
  • GEE G.W., BAUDER J.W. 1986. Particle-size analysis. In: Methods of soil analysis. Part 1. Ed. A. Klute. 2nd ed. SSA Book Ser. No. 9. Agronomy. Madison, WI. American Society of Agronomy, Inc. Soil Science Society of America, Inc. p. 383–411.
  • GODFRAY H.C.J., BEDDINGTON J.R., CRUTE I.R., HADDAD L., LAWRENCE D., MUIR J.F., PRETTY J., ROBINSON S., THOMAS S.M., TOULMIN C. 2010. Food security: the challenge of feeding 9 billion people. Science. Vol. 327(5967) p. 812–818. DOI 10.1126/science.1185383.
  • GOOSHEH M., PAZIRA E., GHOLAMI A., ANDARZIAN B., PANAHPOUR E. 2018. Improving irrigation scheduling of wheat to increase water productivity in shallow groundwater conditions using AquaCrop. Irrigation and Drainage. Vol. 67(5) p. 738–754. DOI 10.1002/ird.2288.
  • GREGORY P.J., INGRAM J.S., BRKLACICH M. 2005. Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 360(1463) p. 2139–2148. DOI 10.1098/rstb.2005.1745.
  • HOZAYN M., ALI HM. H., MARWA M.A., EL-SHAFIE A.F. 2020. Influence of magnetic water on French basil (Ocimum basilicum L. var. Grandvert) plant grown under water stress conditions. Plant Archives. Vol. 20 (1) p. 3636–3648.
  • IPCC 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Eds. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, D. Wuebbles. Intergovernmental Panel on Climate Change. Cambridge, United Kingdom & New York, NY, USA. Cambridge University Press pp. 1586.
  • IPCC 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. V.R. Barros, C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, L.L. White. Cambridge, UK and New York, NY, USA. Cambridge University Press pp. 688.
  • JEFFERIES M., BEEN K. 2015. Soil liquefaction: A critical state approach. 2nd ed. CRC Press. ISBN 9780429153914 pp. 712. DOI 10.1201/b19114.
  • KET P., GARRÉ S., OEURNG C., HOK L., DEGRÉ A. 2018. Simulation of crop growth and water-saving irrigation scenarios for lettuce: A monsoon-climate case study in Kampong Chhnang, Cambodia. Water. Vol. 10(5), 666. DOI 10.3390/w10050666.
  • KLUTE A., DIRKSEN C. 1986. Hydraulic conductivity and diffusivity. Laboratory methods. In: Methods of soil analysis. Part 1. Agronomy. Ed. A. Klute. 2nd edition. SSA Book Ser. No. 9. Agronomy. Madison, WI. ASA and SSSA p. 687–734.
  • KUMAR M. 2016. Impact of climate change on crop yield and role of model for achieving food security. Environmental Monitoring and Assessment. Vol. 188(8) p. 1–14. DOI 10.1007/ s10661-016-5472-3.
  • LIPOVAC A., VUJADINOVIĆ MANDIĆ M., VUKOVIC A., STRIČEVIĆ R.J., STRIČEVIĆ R. 2018. Assessment of AquaCrop model on potato water requirements in climate change conditions. 10th Eastern European Young Water Professionals Conference IWA YWP. 7–12.05.2018 Zagreb, Croatia p. 70–77.
  • LUCK J., ASADUZZAMAN M., BANERJEE S., BHATTACHARYA I., COUGHLAND K., CHAKRABORTY A., SPOONER-HART R. 2012. The effects of climate change on potato production and potato late blight in the Asia-Pacific Region. APN Science Bulletin. No. 2 p. 28–33.
  • MALL R., GUPTA A., SONKAR G. 2017. Effect of climate change on agricultural crops. In: Current developments in biotechnology and bioengineering: Crop modification, nutrition, and food production. Eds. S. Kumar Dubey, A. Pandey, R. Singh Sangwan. Elsevier p. 23–46. DOI 10.1016/B978-0-444-63661-4.00002-5.
  • MARWA M.A., ABDELRAOUF R.E., WAHBA S.A., EL-BAGOURI K.F., EL-GINDY A.G. 2017. Scheduling irrigation using automatic tensiometers for pea crop. Agricultural Engineering International. CIGR Journal. Spec. iss. p. 174–183.
  • MARWA M.A., EL-SHAFIE A.F., DEWEDAR O.M., MOLINA-MARTINEZ J.M., RAGAB R. 2020. Predicting the water requirement, soil moisture distribution, yield, water productivity of peas and impact of climate change using SALTMED model. Plant Archives. Vol. 20 (1) p. 3673–3689.
  • MBANGIWA N.C., SAVAGE M.J., MABHAUDHI T. 2019. Modelling and measurement of water productivity and total evaporation in a dryland soybean crop. Agricultural and Forest Meteorology. Vol. 266 p. 65–72. DOI 10.1016/j.agrformet.2018.12. 005.
  • MEDANY M., HASSANEIN M.K. 2006. Assessment of the impact of climate change and adaptation on potato production. Egyptian Journal of Applied Sciences. Vol. 21(11B) p. 623–638.
  • MONTERROSO-RIVAS A.I., GÓMEZ-DÍAZ J.D., ARCE-ROMERO A.R. 2018. Soil, water, and climate change integrated impact assessment on yields: Approach from Central Mexico. International Journal of Agricultural and Environmental Information Systems (IJAEIS). Vol. 9(2) p. 20–31. DOI 10.4018/IJAEIS.2018 040102.
  • MONTOYA F., CAMARGO D., ORTEGA J.F., CÓRCOLES J.I., DOMÍNGUEZ A. 2016. Evaluation of AquaCrop model for a potato crop under different irrigation conditions. Agricultural Water Management. Vol. 164 p. 267–280. DOI 10.1016/j.ag-wat.2015.10.019.
  • NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology. Vol. 10(3) p. 282–290. DOI 10.1016/0022-1694(70)90255-6.
  • NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018 p. 1–19. DOI 10.1016/ j.jhydrol.2020.125018.
  • OLIVEIRA J.S., BROWN H.E., GASH A., MOOT D.J. 2016. An explanation of yield differences in three potato cultivars. Agronomy Journal. Vol. 108(4) p. 1434–1446. DOI 10.2134/agronj 2015.0486.
  • OZTURK I., SHARIF B., BABY S., JABLOUN M., OLESEN J.E. 2017. The long-term effect of climate change on productivity of winter wheat in Denmark: A scenario analysis using three crop models. The Journal of Agricultural Science. Vol. 155(5) p. 733–750. DOI 10.1017/s0021859616001040.
  • RADHOUANE L. 2013. Climate change impacts on North African countries and on some Tunisian economic sectors. Journal of Agriculture and Environment for International Development. Vol. 107(1) p. 101–113. DOI 10.12895/jaeid.20131.123.
  • RAES D., STEDUTO P., HSIAO T.C., FERERES E. 2009. AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal. Vol. 101 p. 438–447. DOI 10.2134/agronj2008.0140s.
  • RAYMUNDO R., ASSENG S., ROBERTSON R., PETSAKOS A., HOOGENBOOM G., QUIROZ R., HAREAU G., WOLF J. 2018. Climate change impact on global potato production. European Journal of Agronomy. Vol. 100 p. 87–98. DOI 10.1016/j.eja.2017. 11.008.
  • RAZZAGHI F., ZHOU Z., ANDERSEN M.N., PLAUBORG F. 2017. Simulation of potato yield in temperate condition by the AquaCrop model. Agricultural Water Management. Vol. 191 p. 113–123. DOI 10.1016/j.agwat.2017.06.008.
  • RITCHIE J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research. Vol. 8(5) p. 1204–1213. DOI 10.1029/WR008i005p01204.
  • RITCHIE J.T., GODWIN D.C., OTTER-NACKE S. 1985. CERES-Wheat. A simulation model of wheat growth and development. ARS (1985) US Department of Agriculture p. 159–175.
  • SAADATI Z., PIRMORADIAN N., REZAEI M. 2011. Calibration and evaluation of AquaCrop model in rice growth simulation under different irrigation managements. In: ICID 21st International Congress on Irrigation and Drainage. 15–23.10.2011 Tehran, Iran p. 589–600.
  • SEMENOV M.A., BARROW A. 2002. LARS-WG: A stochastic weather generator for use in climate impact studies. Version 3.0 User Manual. Hertfordshire, UK pp. 27.
  • SEMENOV M.A. STRATONOVITCH P. 2015. Adapting wheat ideo-types for climate change: Accounting for uncertainties in CMIP5 climate projections. Climate Research. Vol. 65 p. 123–139. DOI 10.3354/cr01297.
  • SHRESTHA L., SHRESTHA N.K. 2017. Assessment of climate change impact on crop yield and irrigation water requirement of two major cereal crops (rice and wheat) in Bhaktapur district, Nepal. Journal of Water and Climate Change. Vol. 8(2) p. 320–335. DOI 10.2166/wcc.2016.153.
  • STEDUTO P., HSIAO T.C., RAES D., FERERES E. 2009. AquaCrop – The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal. Vol. 101 p. 426–437. DOI 10.2134/agronj2008.0139s.
  • STRIČEVIĆ R., TRBIĆ G., VUJADINOVIĆ M., CUPAĆ R., ĐUROVIĆ N., ĆOSIĆ M. 2017. Impact of climate change on potato yield grown in different climatic zone in Bosnia and Herzegovina. In: VIII International Scientific Agriculture Symposium, “Agrosym 2017”. Jahorina, Bosnia and Herzegovina, October 2017. Ed. D. Kovačević p. 596–601.
  • TAN S., WANG Q., ZHANG J., CHEN Y., SHAN Y., XU D. 2018. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agricultural Water Management. Vol. 196 p. 99–113. DOI 10.1016/j.agwat.2017.11.001.
  • VAN OORT P.A., ZWART S.J. 2018. Impacts of climate change on rice production in Africa and causes of simulated yield changes. Global Change Biology. Vol. 24(3) p. 1029–1045. DOI 10.1111/gcb.13967.
  • WAHBA S.A., EL-GINDY A.M., El-BAGOURI K.F., MARWA M.A. 2016. Response of green peas to Irrigation automatic scheduling and potassium fertigation. International Journal of ChemTech Research. Vol. 9(3) p. 228–236.
  • WILLMOTT C.J., ACKLESON S.G., DAVIS R.E., FEDDEMA J.J., KLINK K.M., LEGATES D.R., O’DONNELL J., ROWE C.M. 1985. Statistics for the evaluation of model performance. Journal of Geophysical Research. Vol. 90(C5) p. 8995–9005. DOI 10.1029/JC090iC05p08995.
  • YOUSSEF E.A., EL-BASET M.M.A., EL-SHAFIE A.F., HUSSIEN M.M. 2018. Study the applications of water deficiency levels and ascorbic acid foliar on growth parameters and yield of summer squash plant (Cucurbita pepo L.). Agricultural Engineering International: CIGR Journal. Special Issue p. 147–158.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7c47c1c-38b0-40d5-83cf-c4fb6d8fe813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.