
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 17

Implementation of the Turing machine simulator

P. NOSAŻEWSKI, J. WIŚNIEWSKA

nosazewskipawel@gmail.com, joanna.wisniewska@wat.edu.pl

Military University of Technology, Faculty of Cybernetics
Kaliskiego Str. 2, 00-908 Warsaw, Poland

This paper describes the process of designing and implementing a Turing machine simulator application.
The created desktop application is distinguished from other solutions by the use of the latest technology and
offline operating. The various stages of the project are described, such as defining requirements, creating UML
diagrams, and prototyping the user interface. A MVVM architectural model used in building the application is
presented. The issues of controls, data binding, and message passing found in the Avalonia package are
addressed. The unit tests created and the exploratory tests performed are also described.

Keywords: Turing machine, simulator, application.

DOI: 10.5604/01.3001.0015.9040

1. Introduction

The Turing machine is an extremely important
mathematical model that is widely known in
the scientific community. It is based on the
classification of algorithmic problems. Its
construction is extremely simple. This is because
it consists of just three components: a head that
reads and writes data, an infinite tape that holds
cells with symbols, and a control system that
manages the operation of the head. Despite such
an uncomplicated assembly, it is not possible to
construct it in this form, due to the fact that
infinite tape is used. We can only build
approximations of it, both mechanical (Figure 1)
and fully software-based, running on computers
as simulators.

Fig. 1. A mechanical implementation
of a Turing machine (source:

https://medium.com/creative-automata/classic-turing-
machine-with-tape-erasure-e14870ad154e)

A simulator can be defined as a computer

program that reproduces the operation of certain
devices or the course of certain processes [2].

Simulation (from Latin: simulatio –
“pretending”) can be called an approximate
reproduction of phenomena on the basis of their
model. Due to the predictability of events, we
can distinguish between stochastic, fuzzy and
deterministic simulations. The program that was
created for this paper implements deterministic
simulations, i.e. simulations whose outcome is
repeatable and depends only on the input data
and any interactions with the outside world.
In the case of the Turing machine simulator,
the inputs are the symbols entered on the tape
and a set of control instructions.

A Turing machine simulator running on
a computer differs from its prototype in the
limitations it faces. The main one is the finite
memory capacity of the computer. This is
because working memory is the equivalent of
a machine’s tape.

2. Review of existing solutions

Work on the application began with a review of
existing solutions. It allowed us to gather
information about the advantages and
disadvantages of the simulators already created.
This made it possible to produce a program that
combines the good points of each while not
repeating the mistakes. The simulators we were
able to find were mostly web applications,
running on web pages. What they have in
common is the need to maintain an Internet
connection and the use of a web browser.
All have been implemented in Javascript.

Paweł Nosażewski, Joanna Wiśniewska, Implementation of the Turing machine simulator

 18

Thanks to the initial insight, it was possible to
define the requirements the application should
meet.

3. Design assumptions

The simulator application was to allow the user
to define an alphabet, enter an input string to
tape, enter control instructions, select the
number of tapes from 1 to 3, select the mode of
simulation operation (step or continuous), select
the speed of simulation, and save and read
programs to the computerʼs hard drive. These
are functional requirements, i.e. requirements
that describe the functions (activities, operations,
services) performed by the system. The non-
-functional requirements, describing the features
of the system and limitations under which it
should perform its functions, included no need
for Internet connection, clear user interface,
operating without the use of additional software
(in particular a web browser).

4. Preparation of application design

Once the list of requirements was compiled, the
next step was to prepare the application design.
This design consisted of UML diagrams such as
use case diagram, classes and sequences.

In Figure 2 is a use case diagram which is
a graphical representation of the system
functionality along with its environment. It is
used to illustrate possible actions without
revealing the details of their course of action.
It demonstrates the relationship of the
environment to the use cases, as well as
the relationship between the cases themselves.

Diagrams help organize project
information. Knowing what the end result should
look like is very important downstream in the
application development process. Changes made
at this level are not as costly as they would be
during implementation.

A very important part of the application is
its interface. It is responsible for communicating
with the user and enables interactions to be
performed. The simulator produced for this
paper uses a graphical interface. Its clarity and
ease of use is a key to user convenience. It is
considered good practice to group fields
according to their functional relationship.
According to Millerʼs number [4], the number of
such fields should not exceed about seven.

The interface prototype was created in
a tool available at https://www.fluidui.com.
When placing items on the screen, areas such as
setting the number of tapes and simulation
mode, symbol definition section, and data entry
have been separated (Figure 3).

Fig. 2. Use case diagram

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 19

Fig. 3. User interface design

Fig. 4. Visual representation of code processing in the .NET platform

Paweł Nosażewski, Joanna Wiśniewska, Implementation of the Turing machine simulator

 20

5. Choice of technology

After determining the application features and
interface mockup, the next step was to select
the technology in which the simulator would
be created. The choice was made to use the
latest technologies available at the time of
writing, released just a month before the
application work began.

Windows 10 operating system was used to
run the application and development
environment.

The environment itself was Visual Studio
2022 Community version – a software from
Microsoft. It provides many mechanisms to
streamline code work. These include code
completion using artificial intelligence
(IntelliCode), an integrated debugger for
easy error detection, and built-in Git version
control [5].

The application was based on the .NET 6
platform. It includes a runtime environment
and class libraries that provide standard
functionality. It is not tied to a single
programming language. One can use languages
such as C#, C++/CLI, F#, J#, Visual Basic or
Delphi to create programs. C# version 10
language was used to produce the application
for this paper. Applications written for the
.NET platform run in a software environment
called the Common Language Runtime (CLR).
This environment is responsible for memory
management, security, and exception handling.
The code written by the programmer is
compiled into intermediate code called
Common Intermediate Language (CIL). When
code is executed on a particular machine,
a just-in-time (JIT) compiler, appropriate for
that machine, converts CIL into machine code
that can be processed directly by the
computer’s processor (Figure 4). Thanks to
this behavior, applications written based on
this platform can be run on different machines
with different operating systems.

The class library that the .NET platform
offers is rich in programmer-ready features.
It provides toolkits for user interface,
cryptography, network communication,
database connection, file access, and numerical
algorithms. It enables the development of
desktop and web applications [6].

An extremely important part of the
technology stack used was the Avalonia
package. It is a toolkit based on the XAML
(Extensible Application Markup Language)
markup language used to describe the
appearance of the user interface. This project

was created as part of the .NET Foundation,
an independent non-profit organization. It is
supported by 200 volunteer programmers [1].
It is a cross-platform package that works with
the .NET platform and the C# language.
It allows to create a desktop application
interface that is consistent in appearance across
different operating systems. It has an open
source code and the project's website provides
detailed technical documentation. Avalonia
offers extensions to the Visual Studio
environment, thanks to which it is possible,
among others, to preview the changes made
live, as well as to use an advanced debugging
tool called DevTools.

The styles used in the Avalonia package
allow interface elements to share properties.
It is possible to define custom classes to refer
to its individual components. Modifying
the appearance in this way is very convenient
and practical, because a change made in one
place will be propagated to the entire
application. This avoids code duplication that
can cause maintenance problems in the future.
In addition to the mentioned classes, there are
also other selectors such as name, type or
hierarchical selectors, allowing you to refer to
subordinate (child) or parent (parent) elements
by navigating a logical tree structure.

Avalonia offers many ready-to-use
controls – graphical interface elements – used
to present content, enter data or allow
modification of program operation by the user.

Data binding allows you to separate the
logic of your application from its design. Data
entered by the user through the interface is
passed to the application layers responsible for
processing it. Such a mechanism allows the use
of the MVVM architectural pattern.

6. Architectural pattern

An architectural pattern in the context of
software development refers to a recognized
and proven way to solve a software
architecture problem. Patterns define the
overall structure of an information system, its
components, their functions, and the rules of
communication between them [7]. Some of the
most common patterns include:

• Client – server,
• Master – slave,
• Model – view – controller,
• Model – view – view model.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 21

The latter was used in the development
of the simulator application.

The Model–View–View Model (MVVM)
pattern consists of three basic components
– model, view, and view model. The
relationships that exist between them are
shown in Figure 5.

The view is connected to the view model,
using data binding and commands. The view
model is responsible for updating the data that
goes into the model. One-way relationships
apply here, in which the view “knows” of the
existence of the view model, but the view
model “does not know” of the existence of the
view. Similarly, the view model “knows”
about the existence of the model, but the model
“does not know” about the existence of the
view model. With such dependencies, it is
possible to completely separate the logic part
from the user interface. The various
components communicate with each other by
sending notifications.

The advantages of using the MVVM
pattern are the ability to, among other things,
create unit tests without using a view, redesign
the look of the application without changing

the code, have designers and developers work
independently and simultaneously.

The view is responsible for presenting
data to the user. It should be defined in
the XAML language and limited only to
creating the appearance of the application.
No operating logic should be included in the
view. In the Avalonia package, a view is most
often represented by a class inheriting from
the Window or UserControl class.

The view model defines the properties and
commands that the view is associated with via
data binding. It notifies the view of any
changes using the notifications shown in
Figure 6. This makes data modification visible
to the user almost instantly. The view model is
also responsible for coordinating interactions
with models. It can make data from the model
available to the view in an appropriate form
after possible transformation.

The model is formed by classes that
encapsulate the data present in the application.
It contains business logic and also provides
data externally e.g. by downloading it from
a server. Data transfer objects (DTOs) can be
examples of model objects.

Fig. 5. Relationships between the components of the MVVM pattern

Fig. 6. Diagram showing the view, view model, and their relationships

Paweł Nosażewski, Joanna Wiśniewska, Implementation of the Turing machine simulator

 22

7. Application implementation

The application code was divided according to
the MVVM architectural pattern into view, view
model and model files. In addition to the design
of the application itself, a design containing unit
tests was also created (Figure 7).

The user interface consists of a main
window where elements such as buttons, text
boxes, labels and tapes are arranged. Tapes have
been implemented as separate views.

XAML is a markup language that makes it
easy to create a graphical interface (Figure 13).
Elements defined with it are mapped to Common
Language Runtime objects, and attributes are
converted into properties and events of those
objects.

Fig. 7. Application structure

The tape is drawn on a canvas of specific
dimensions. The cells and the head position
indicator are placed on it. With the
“ItemsControl” tag, it is possible to define
a template according to which the elements of
the set related by the “Binding” instruction will
be displayed. “Cells” is a collection of cells that
resides in the tape view model. Each cell is
represented as a square and a text block that also
uses a data binding mechanism. Styles were used
to position the cells relative to the canvas.
The head pointer is drawn from the defined
points.

In addition to defining the appearance using
XAML language markup, it is also possible to
write C# code in the view class. However, in
accordance with good practice, this should be
kept to the minimum necessary, bearing in mind
the principles of the architecture used.

The ReactiveUI toolkit was used
to implement the message window.
A WhenActivated method is used in the main
window view builder to ensure that the passed
action is called when the view is created and that
memory is correctly freed when the view model
is deleted. On line 8 in Figure 8, you can see the
registration of the handler procedure. Figure 9
shows the definition of this procedure.

An interaction is passed to the ShowDialog
method with an input parameter whose value is
the message content. A “Dialog” class object
that belongs to the view is created, and then
a model of that view is assigned to its context.
The message content goes into the Text property
of the view model, which is associated with
the text block. The view is then invoked
as a dialog visible to the user.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 23

Fig. 8. The main window view builder

Fig. 9. Asynchronous method “ShowDialog”

Fig. 10. Message window

Fig. 11. Dialogue view builder

The dialog view model defines the

CloseCommand command, which is associated
with the button shown in Figure 10.
It is also subscribed to in the view builder,
as shown in Figure 11. Executing the command
therefore results in closing the window.

The mentioned interaction is one of the
properties of the main window view model.
Figure 12 shows its definition and the builder
fragment where its instance is created. In the
definition of another command, a service

procedure is called and an argument, which is
the content of the message, is passed.

The alphabet is all the symbols used in the
operation of the machine. The user defines them
by entering instructions and inputs. Some of
the symbols have special significance for the
operation of the simulator. These are the head
offset characters and the blank symbol.
Figure 15 shows a portion of the user interface
for entering this data, along with sample values.

Paweł Nosażewski, Joanna Wiśniewska, Implementation of the Turing machine simulator

 24

Fig. 12. A fragment of the main window view model builder

Fig. 13. A fragment of the main window view in the XAML language

.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 25

Fig. 14. A view that defines the appearance of the tape

The user has the option of entering the input
data as a string on the tape. There is a text field
and an approval button for this purpose
(Figure 16). A text field uses a data binding
mechanism, which means that a change to its
content is immediately handled by code in
the view model. A button, on the other hand, is
associated with a command. Pressing it calls
the WriteToTape method, the definition of which
can be seen in Figure 17.

Fig. 15. Text fields used to define special symbols

Fig. 16. Text box and button for input

Paweł Nosażewski, Joanna Wiśniewska, Implementation of the Turing machine simulator

 26

Fig. 17. WriteToTape method of the tape object

Fig. 18. Program data class definition

The input string is split into individual

characters that go to the first tape. If the number
of characters turns out to be greater than the
number of available cells, new objects are
created. Cells that are part of the application
model are wrapped in the view model to provide
properties for the data binding mechanism.
References to these properties can be seen in
Figure 14. A unit test has been written for the
discussed method, which is described in more
detail in the next section.

Critical to the operation of the simulator is
the set of instructions that control its operation.
The user has the option to enter the program in
text form, maintaining the established
formatting. Individual instructions should be
entered as pairs of lines containing a condition
and a command, with elements separated by
a comma. A condition consists of the status of
the machine and symbols on consecutive tapes,
while a command consists of the status of the
machine, symbols on consecutive tapes, and
shift marks on consecutive tapes. The field
allows to enter multiple lines of text. Space
characters and lines beginning with the string
“//” are ignored. The watermark informs the user
of the instruction input format.

Instructions given by the user in text form
are then converted into objects based on which
the simulator operates. Conditions and
commands are represented by records, which are
reference type objects that have been available
since C# language version 9. Instructions
transformed in this way then go into

a dictionary, where the key is the condition
record and the value is the command record.
During program execution, the simulator
searches the dictionary for a condition and then
executes the command associated with that
condition. The instruction processing algorithm
is checked using the unit test mentioned in
the next section.

The simulator can operate in two modes –
step and fast (automatic). In the former, the
program takes one step and waits for the user's
response. Each time the “Step” button is pressed,
one instruction will be executed.

A switch is responsible for changing the
operating mode. The button caption changes
depending on the mode selected and the state of
the simulator. The user can adjust the simulation
speed using a slider. Moving it to the left
increases the intervals between executed
instructions during automatic operation, while
moving it to the right decreases the intervals.

A useful feature from the point of view
of application convenience is the ability to save
and load a ready-made simulator program.
It includes instructions, special symbols, initial
and final states, and input data. Programs are
saved with the extension “.smt”.

The mentioned data has been grouped into
an object of the class ProgramData (Figure 18),
which is serialized using the SerializeObject
method from the “Json.NET” package when
saved. This converts the class properties into text
in JSON format.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 27

Fig. 19. Definition of the SetTapeCount method

When the file is loaded, the reverse process

occurs. The text in JSON format is deserialized
into an object of class ProgramData.
The values of each property of the created object
are then assigned to the properties of the view
model.

The simulator allows you to work on one,
two or three tapes. The user can select the
number of them using the switch. Changing
the setting calls the SetTapeCount method
(Figure 19) with the desired value, which is the
number of tapes the simulator is to run on.

8. Application testing

Software testing is an important stage during
the software development process. It saves time
while keeping the application in operation. There
are many types of tests. They can verify specific
classes, components, and even entire systems.
They are divided into manual and automated
tests. The simplest and most popular are unit
tests. They make it possible to detect many
errors early, which is crucial especially in large
projects. These are classified as automated tests.
Once prepared by a programmer, tests can be run
multiple times.

Unit testing is a method of testing software
by verifying the correct operation of individual
program elements (units). A check of this type
involves performing some action on an object,
then comparing the result to the expected value.
This is to detect errors in the code early and
make it easier to maintain in the future.

There are three main sets of unit test
development tools available for the C# language.
These include MSTest, NUnit, and xUnit.net.
During the development of the presented
application the last one was used. It is a free
open source tool. It stands out as having the
clearest set of attributes and provides a large
number of additional packages in the NuGet
repository. One of them is an add-in used in this
project called “Fluent Assertions”, which allows

you to define assertions in a natural way and get
clear and valuable test failure messages. Another
is the “Moq” package, which provides useful
functions designed to create surrogates.

The unit tests created for the Turing
machine simulator application were created
according to good practice guidelines for writing
tests of this type [3]. The name of a test class
consists of the name of the class being tested
within its methods and the adnote “Tests”. The
methods of the test class were named according
to the following scheme: name of the test
method, character “_”, test scenario, character
“_”, expected result. The tests consist of three
sections:
• arrange – create necessary objects and set

their properties,
• act – perform actions on objects,
• assert – compare the result of an action with

the expected result.
When loading input data onto a tape, it is

important to ensure that there are enough cells to
hold the entire symbol string being input.
To verify the correctness of this part of the code,
a test was used to see if enough cells were
created on the tape. By using InlineData
attributes, it is easy to create a test with
parameters. This solution reduces the number of
tests because all tests based on the same
scenario, differing only in input data, can be
compressed into a single parameterized test.
In the event of a failure, the programmer is told
exactly which data set caused the failure.

A set of instructions entered by the user in
the form of text must be processed into
appropriate condition and command pairs. Each
pair then goes into a dictionary, where the key is
the condition and the value is the command.
Another of the tests is to verify the correctness
of processing the program into a dictionary with
instructions. The InlineData attribute used
previously does not allow the dynamic creation
of parameter instances of the reference type,
so in order to pass a dictionary as a parameter,

Paweł Nosażewski, Joanna Wiśniewska, Implementation of the Turing machine simulator

 28

it was necessary to use the MemberData
attribute. The static “Data” property defines
three sets of parameters for the test in question.
The correctness of processing a program
consisting of one instruction for one, two and
three tapes is checked. In addition to this, the
proper behavior of the algorithm when using
spaces and newline characters in the input string
is also verified.

Exploratory tests belong to the group of
manual tests. Their advantages include fast
implementation and execution, compared to
automated testing. These are black box tests and
therefore functional tests. Their task is to verify
the correct operation of the system, detect
implementation errors and lack of compliance
with requirements. All this without knowledge
of the programʼs internal structure.

While working on the application, tests
based on two test cases were conducted.
They included the requirements specification,
the steps taken, and the expected outcome.
The tests were performed on a Windows 10
computer.

9. Conclusion

The work described above resulted in a Turing
machine simulator application that allows for
alphabet definition, data entry, and control
instructions. In addition, the simulator allows
you to work on multiple tapes, and offers
a choice of step and fast modes.

To complete the tasks set, it was necessary
to explore topics such as Turing machine, finite
automata, and software development
technologies.

The application can be used by teachers
who want to show their students how a Turing
machine works in practice. Students will be able
to develop and test programs independently.
This way of learning is very attractive and
effective.

The latest technology available at the time
was used to produce the application. Both the
.NET platform version 6, the Visual Studio
development environment version 2022, and the
C# language version 10 were released just
a month before the work began. Thanks to this it
was possible to test the new possibilities they
offer in practice. These tools were chosen
because they are being developed rapidly and
knowledge in their use is valued in the labor
market.

The final result of the work is a desktop
application offering all the assumed functions
(Figure 20). Besides, it allows you to save the
data required for the simulator to a file on your
computer's hard drive. This makes it possible to
prepare ready-made programs and then load
them into the application and start the
simulation.

The application features a clear and modern
graphical interface. It can be built in a version
to run on different operating systems.
The application remains open for further
development opportunities. The simulator can be
expanded to support more tapes or additional
modes of operation. In the present form,
a deterministic Turing machine is simulated.
Supporting a probabilistic version of this model
seems to be an interesting possibility.

Fig. 20. Turing machine simulator application at runtime

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 13-14 17−29 (2021)

 29

10. Bibliography

[1] Avalonia Project Home Page,

https://avaloniaui.net/, 30.12.2021.
[2] Dictionary of Polish Language, PWN,

https://sjp.pwn.pl/slowniki/symulator.html,
07.06.2021.

[3] Microsoft Documentation,
https://docs.microsoft.com/en-us/dot-
net/core/testing/unit-testing-best-practices,
07.01.2022.

[4] Miller G.A., The Magical Number Seven,
Plus or Minus Two: Some Limits on Our
Capacity for Processing Information,
http://www.musa-nim.com/miller1956/,
05.01.2022.

[5] Nosażewski P., Implementacja symulatora
maszyny Turinga, Warszawa 2022.

[6] Visual Studio,
https://visualstudio.microsoft.com/pl/vs/,
30.12.2021.

[7] Wikipedia,
https://en.wikipedia.org/wiki/.NET_Frame
work, 30.12.2021.

[8] Wikipedia,
https://pl.wikipedia.org/wiki/Wzorzec_archi
tektoniczny, 31.12.2021.

Implementacja symulatora maszyny Turinga

P. NOSAŻEWSKI, J. WIŚNIEWSKA

Artykuł opisuje proces projektowania i implementacji aplikacji symulatora maszyny Turinga. Wytworzona
aplikacja desktopowa wyróżnia się wśród innych rozwiązań zastosowaniem najnowszych technologii i brakiem
konieczności połączenia z Internetem. Opisano poszczególne etapy projektu, takie jak zdefiniowanie wymagań,
utworzenie diagramów UML, sporządzenie prototypu interfejsu użytkownika. Przedstawiony został wzorzec
architektoniczny MVVM zastosowany podczas budowy aplikacji. Poruszono kwestie kontrolek, wiązania
danych i przesyłania komunikatów występujące w pakiecie Avalonia. Opisano także utworzone testy
jednostkowe i przeprowadzone testy eksploracyjne.

Słowa kluczowe: maszyna Turinga, symulator, aplikacja.

This work was financed by Military University of Technology under research project UGB no 860 /2021.

