PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, mechanical properties and corrosion behavior of friction stir processed AA2014 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, a large-area stir zone (SZ) was fabricated in AA2014 alloy using multi-pass friction stir processing (FSP) with pin overlapping. The microstructure evolution, crystallographic texture, precipitation phenomenon, and tensile behavior were studied and reported. The microstructure of the large-area SZ consists of equiaxed fine grains with a high density of high angle boundaries caused by dynamic recovery (DRV) and continuous-dynamic recrystallization (C-DRX), and the grain refining has been uniform in each overlapping pass (the grain size within 4-7 μm range). The material flow around the pin caused by the stirring action of the tool contributed to the creation of a strong Brass-{110}<112>and A-{110}<111>components in the first pass of SZ. Unlike first pass SZ, the second to fifth-pass SZ presents Copper-{112}<111>and Cube- {001}<100>components due to an increase of heat input by the shoulder to participate multiple times on each overlapping SZ. The hardness and strength of the FSP sample were found to be lowered relative to a base metal. Simultaneously, the SZ ductility increased after FSP by 155% due to the material softening and dissolution of Al2Cu precipitates in the SZ. Kocks-Mecking plots of the BM and FSP samples witnessed the Stage-III of work-hardening behavior. The fine-grain structure and precipitation phenomenon in the FSP sample resulted in better corrosion resistance than the base metal.
Rocznik
Strony
art. no. e43, 2023
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Anil Neerukonda Institute of Technology and Sciences, Visakhapatnam 531162, India
autor
  • National Institute of Technology, Warangal 506004, India
  • National Institute of Technology, Trichy 620015, India
autor
  • Indian Institute of Technology, Bombay 400076, India
  • Indian Institute of Technology, Bombay 400076, India
Bibliografia
  • 1. Weglowski MS. Friction stir processing-state of the art. Arch Civil Mech Eng. 2018;18:114-29.
  • 2. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1-78.
  • 3. Nandan R, Debroy T, Bhadeshia HKDH. Recent advances in friction-stir welding-processing, weldment structure and properties. Prog Mater Sci. 2008;53:980-1023.
  • 4. Ebrahimi M, Par MA. Twenty-year uninterrupted endeavour of friction stir processing by focusing on copper and its alloys. J Alloy Compd. 2019;781:1074-90.
  • 5. Charith I, Mishra RS. Efect of friction stir processed microstructure on tensile properties of an Al-Zn-Mg-Si alloy upon subsequent ageing treatment. Mater Sci Technol. 2018;34:214-8.
  • 6. Gandra J, Miranda RM, Vilaca P. Effect of overlapping direction in multipass friction stir processing. Mater Sci Eng, A. 2011;528:5592-9.
  • 7. Johannes LB, Mishra RS. Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater Sci Eng, A. 2007;464:255-60.
  • 8. Kwon YJ, Shigematsu I, Saito N. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scripta Mater. 2003;49:785-9.
  • 9. Jian-Qing Su, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater. 2005;52:135-40.
  • 10. Al-Fadhalaa KJ, Almazrouee AI, Alorai AS. Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater Des. 2014;53:550-60.
  • 11. Rajamanickam N, Balusamy V, Madhusudhana Reddy G, Natarajan K. Effect of process parameters on thermal history and mechanical properties of friction stir welds. Mater Des. 2009;30:2726-31.
  • 12. Ramesh KN, Pradeep S. Vivek Pancholi, multipass friction-stir processing and its effect on mechanical properties of aluminum alloy 5086. Min Metall Mater Soc Trans A. 2012;43A:4311-9.
  • 13. Alavi Ni A, Omidvar H, Nourbakhsh SH. Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31magnesium alloy. Mater Des. 2014;58:298-304.
  • 14. Venkateswarlu G, Devaraju D, Davidson MJ, Kotiveerachari B, Tagore GRN. Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy. Mater Des. 2013;43:480-6.
  • 15. Weifeng Xu, Liu J. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate. Corros Sci. 2009;51:2743-51.
  • 16. Zhao Y, Wang Q, Chen H, Yan K. Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding. Mater Des. 2014;56:725-30.
  • 17. Khodabakhshi F, Nosko M, Gerlich AP. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction stir processing. Surf Coat Technol. 2018;335:288-305.
  • 18. Zhao H, Pan Q, Qin Q, Yujiao Wu, Xiangdong Su. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Mater Sci Eng, A. 2019;751:70-9.
  • 19. McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater. 2008;58:349-54.
  • 20. Jian-Qing Su, Nelson TW, McNelley TR, Mishra RS. Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A. 2011;528:5458-64.
  • 21. Jian-Qing Su, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng, A. 2005;405:277-86.
  • 22. Yazdipour A, Shafei AM, Dehghani K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A. 2009;527:192-7.
  • 23. Vikram KS, Jain KU, Yazar SM. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J Alloys Compd. 2019;798:82-92.
  • 24. Shahuddin UFHR, Mironov S, Sato YS, Kokawa H. Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets. Mater Sci Eng, A. 2010;527:1962-9.
  • 25. Fonda RW, Bingert JF. Texture variations in an aluminum friction stir weld. Scripta Mater. 2007;57:1052-5.
  • 26. Satyanarayana MVNV. Adepu Kumar, Influence of cooling media in achieving grain refinement of AA2014 alloy using friction stir processing. Proc IMechE Part C: J Mech Eng Sci. 2020;234(22):4520-34.
  • 27. Chen Yu. Hua Ding, Jizhong L, Zhi-Hui Cai, Wenjing Yang, Infuence of multipass friction stir processing on microstructure and mechanical properties of Al5083 alloy. Mater Sci Eng A. 2016;650:281-9.
  • 28. Satyanarayana MVNV, Adepu K, Chauhan K. Effect of overlapping friction stir processing on microstructure, mechanical properties and corrosion behavior of AA6061 alloy. Metals Mater Int. 2021;27(9):3563-73.
  • 29. Kocks UF, Mecking H. Physics and phenomenology of strainhardening: the FCC case. Prog Mater Sci. 2003;48:171-273.
  • 30. Kuhlmann-Wilsdorf D. Advancing towards constitutive equations for the metal industry via the LEDS theory. Metall Mater Trans A. 2004;35:369-418.
  • 31. Kocks UF. Laws for work-hardening and low-temperature creep. J Eng Mater Technol. 1976;98:76-85.
  • 32. Rollett AD, Kocks UF. A review of the stages of work hardening. Solid State Phenom. 1993;35-36:1-18.
  • 33. Kocks UF. The relation between polycrystal deformation and single-crystal deformation. Metall Mater Trans A. 1970;1(1970):1121-43.
  • 34. Voce E. A practical strain hardening function. Metallurgia. 1955;51:219-26.
  • 35. Ludwigson DC. Modifed stress-strain relation for FCC metals and alloys. Metall Trans. 1971;2:2825-8.
  • 36. Sainath G, Choudhary BK, Christopher J, Isaac Samuel E, Mathew MD. Applicability of voce equation for tensile fow and work hardening behaviour of P92 ferritic steel. Int J Press Vessel Piping. 2015;132-133:1-9.
  • 37. Kalita SJ. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351. Appl Surf Sci. 2011;257(9):3985-97. https://doi.org/10.1016/j.apsusc.2010.11.163.
  • 38. Sinhmar S, Dwivedi DK. A study on corrosion behavior of friction stir welded and tungsten inert gas welded AA2014 aluminum alloy. Corros Sci. 2018;133:25-35. https://doi.org/10.1016/j.corsci.2018.01.012.
  • 39. Navaser M, Atapour M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J Mater Sci Technol. 2017;33(2):155-65. https://doi.org/10.1016/j.jmst.2016.07.008.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7c14fc6-d71d-4628-8543-02a1ed65d0b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.