Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sandstone is one of the most popular building materials since the earliest times. It has various textures and colours as well as good technical parameters. Sandstones, having such wide applications, are subjected to various external factors during the period of use. So, it is of utmost importance to have a good knowledge of their strength parameters. We employed a numerical method called Discrete Element Method to examine in a non-invasive manner the mechanical strength of industrial sandstones, that are commonly used as broken stones in road construction, cladding material, paving stones, pavement tiles and so on. Various mechanical external factors were considered, such as breaking, compressional and abrasion forces or impact by external objects and vibrations. Fragmentation of the considered sandstones under compressional regime was a source of knowledge about energy storage inside the material and energy release, as well as appearance of fractures inside the matter and final sandstone fragmentation into crumbs.
Wydawca
Czasopismo
Rocznik
Tom
Strony
346--365
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
- Faculty of Geology, University of Warsaw, Warsaw, Poland
autor
- Faculty of Geology, University of Warsaw, Warsaw, Poland
Bibliografia
- [1] Abe, S., V. Boros, W. Hancock, and D. Weatherley (2014), ESyS-particle tutorial and user's guide. Version 2.3.1, https://launchpad.net/esys-particle.
- [2] Basu, A., D. A. Mishra, and K. Roychowdhury (2013), Rock failure modes under uniaxial compression, Brazilian, and point load tests, Bull Eng Geol Environ, 72:457–475, DOI 10.1007/s10064-013-0505-4
- [3] Carmona, H.A., F.K. Wittel, F. Kun, and H.J. Herrmann (2008), Fragmentation processes in impact of spheres, Phys. Rev. E 77, 5, 051302, DOI: 10.1103/PhysRevE.77.051302.
- [4] Courtney, T.H. (1990), Mechanical Behavior of Materials, McGraw-Hill, New York.
- [5] Cundall, P.A. (1971), A computer model for simulating progressive, large-scale movement in blocky rock systems, Proc. Symp. Int. Soc. Rock Mech. 2, 8.
- [6] Cundall, P.A. (1974), A computer model for rock-mass behavior using interactive graphics for the input and output of geometrical data, National Technical Information Service, Report no. AD/A-001 602.
- [7] Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotechnique 29, 1, 47–65, DOI: 10.1680/geot.1979.29.1.47.
- [8] Do, H. Q., Aragón, A. M., and Schott, D. L. (2017). Automated discrete element method calibration using genetic and optimization algorithms. In EPJ Web of Conferences (Vol. 140). EDP Sciences. https://doi.org/10.1051/epjconf/201714015011.
- [9] Egholm, D.L. (2007), A new strategy for discrete element numerical models: 1. Theory, J. Geophys. Res. 112, B5, B05203, DOI: 10.1029/2006JB004557.
- [10] Ferdowsi, B. (2014), Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering, doctoral dissertation
- [11] Fraige, F.Y., and P.A. Langston (2004), Integration schemes and damping algorithms in distinct element models, Adv. Powder Technol. 15, 2, 227–245, DOI: 10.1163/156855204773644454.
- [12] Griffith, A.A. (1921), The phenomena of rupture and flow in solids, Philosophic. Trans. Roy. Soc. London A, 221, 582–593, DOI: 10.1098/rsta.1921.0006.
- [13] Hertzberg, R.W. (1976), Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York.
- [14] Jaeger, J.C., N.G.W. Cook, and R. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell Publ., Malden, 488 pp.
- [15] Kazerani, T. (2013), A discontinuum-based model to simulate compressive and tensile failure in sedimentary rock, J. Rock Mech. Geotech. Eng. 5, 5, 378–388, DOI: 10.1016/j.jrmge.2013.07.002.
- [16] Klejment P. (2020), The Microscopic Insight into Fracturing of Brittle Materials with the Discrete Element Method (Doctoral Dissertation), Publications of the Institute of Geophysics Polish Academy of Sciences – Geophysical Data Bases, Processing and Instrumentation 427 (A-31), DOI: 10.25171/InstGeoph_PAS_Publs-2020-001
- [17] Klemm A., D. Wiggins (2016), Sustainability of Construction Materials. Second edition, Woodhead Publishing, Cambridge.
- [18] Li, Y.-G., ed. (2012), Imaging, Modeling and Assimilation in Seismology, De Gruyter, Berlin.
- [19] Łukaszewski, P. (2003), Development of fracture processes in Silesian Carboniferous sandstones, Geological Quarterly, vol. 47, (1), 29–38.
- [20] Łukaszewski, P. (2013), The deformation of flysch sandstones in a complex state of stress, Wydawnictwo Uniwersytetu Warszawskiego, 221, (in Polish, with English summary).
- [21] Mora, P., and D. Place (1993), A lattice solid model for the nonlinear dynamics of earthquakes, Int. J. Modern Phys. C 4, 6, 1059–1074, DOI: 10.1142/S0129183193000823.
- [22] Mora, P., and D. Place (1994), Simulation of the frictional stick-slip instability, Pure Appl. Geophys. 143, 61–87, DOI: 10.1007/BF00874324.
- [23] Mora, P. and D. Place (2002). "Stress correlation function evolution in lattice solid elasto-dynamic models of shear and fracture zones and earthquake prediction." Pure and Applied Geophysics, 159(10): 2413–2427.
- [24] Munjiza, A. (2004), The Combined Finite-Discrete Element Method, John Wiley & Sons, Chichester.
- [25] Nitka, M., and J. Tejchman (2015), Modelling of concrete behaviour in uniaxial compression and tension with DEM, Granular Matter 17, 1, 145–164, DOI: 10.1007/s10035-015-0546-4.
- [26] O'Sullivan, C. (2011), Particulate Discrete Element Modelling: A Geomechanics Perspective, Spon Press/Taylor and Francis, London.
- [27] O'Sullivan, C., and J.D. Bray (2004), Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput. 21, 2–4, 278–303, DOI: 10.1108/02644400410519794.
- [28] Onate, E., and J. Rojek (2004), Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Computer Meth. Appl. Mech. Eng. 193, 27–29, 3087–3128, DOI: 10.1016/j.cma.2003.12.056.
- [29] Orowan, E. (1949), Fracture and strength of solids, Rep. Prog. Phys. 12, 1, 185–232, DOI: 10.1088/0034-4885/12/1/309.
- [30] Potyondy, D.O., and P.A. Cundall (2004), A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci. 41, 8, 1329–1364, DOI: 10.1016/j.ijrmms.2004.09.011.
- [31] Rojek, J. (2007), Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych, Prace IPPT PAN, Warszawa (in Polish).
- [32] Sochor, M. (1998), Strength of Materials I, CTU Publishing House, Prague.
- [33] Wang Y., S. Abe, S. Latham and, P. Mora (2006), Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model, Pure and Applied Geophysics 163, 1769–1785, doi 10.1007/s00024-006-0096-0
- [34] Wang, Y.C. (2009), A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations, Acta Geotech. 4, 2, 117–127, DOI: 10.1007/s11440-008-0072-1.
- [35] Wang, Y.C., S. Xue, and J. Xie (2012), Discrete element method and its applications in earthquake and rock fracture modelling. In: Y.-G. Li (ed.) Imaging, Modeling and Assimilation in Seismology, De Gruyter, 235–262.
- [36] Weatherley, D.K., V.E. Boros, W.R. Hancock, and S. Abe (2010), Scaling benchmark of EsyS-Particle for elastic wave propagation simulations, 2010 IEEE Sixth Int. Conf. e-Science, Brisbane, Australia, 277–283, DOI: 10.1109/eScience.2010.40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7bfca1d-9b0d-41fe-9f75-0ccf3f11b3c5