PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the calcium carbonate particles manufacturing process by the precipitation method and biological evaluation with MG-63 cells

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a natural mineral, calcium carbonate (CaCO3) is widely investigated for various medical applications. It is a biocompatible material characterized by high degradation rate and great osteoconductivity. Many researchers evaluate CaCO3 in the form of particles as a candidate for use in drug delivery systems. In this study we present an optimization of the process of producing CaCO3 particles by the precipitation method with the use of combinations of different time of ultrasound treatment and surfactant concentrations used. Depending on the synthesis conditions, various sizes of particles were fabricated. The particles were loaded with sodium alendronate (Aln, 5% or 10% by weight) with a relatively high encapsulation efficiency between 40 and 50%, depending on the amount of Aln added and the drug loading of approximately 9% for both cases. MG-63 osteoblast-like cells were contacted with 10% wt./vol extracts of fabricated particles to assess their cytotoxicity. None of the extracts investigated was found to be cytotoxic. Furthermore, an in vitro study in direct contact of MG-63 cells with particles suspended in culture medium was performed. The results showed that the fabricated particles are cytocompatible with osteoblast-like MG-63 cells. However, the higher the concentration of the particle suspension and the greater the amount of alendronate present in the solution, the lower the metabolic activity of the cells was measured. The presented method of CaCO3 particles manufacturing is simple, cost-effective, and allows one to fabricate particles of the required size and shape that are cytocompatible with MG-63 cells in defined concentrations of particle suspensions.
Rocznik
Strony
20--27
Opis fizyczny
Bibliogr. 33 poz., tab., wykr., zdj.
Twórcy
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Li L., Yang Y., Lv Y., Yin P., Lei T.: Porous calcite CaCO3 microspheres: Preparation, characterization and release behavior as doxorubicin carrier. Colloids and Surfaces B: Biointerfaces 186 (2020) 110720.
  • [2] Tan C., Dima C., Huang M., Assadpour E., Wang J., Sun B., Kharazmi M., Jafari S. M.: Advanced CaCO3-derived delivery systems for bioactive compounds. Advances in Colloid and Interface Science 309 (2022) 102791.
  • [3] Ferreira A.M., Vikulina A.S., Volodkin D.: CaCO3 crystals as versatile carriers for controlled delivery of antimicrobials. Journal of Controlled Release 328 (2020) 470-489.
  • [4] Li X., Yang X., Liu X., He W., Huang Q., Li S., Feng Q.: Calcium carbonate nanoparticles promote osteogenesis compared to adipogenesis in human bone-marrow mesenchymal stem cells. Progress in Natural Science: Materials International 28(5) (2018) 598-608.
  • [5] Bang L.T., Son N.A., Long B.D., Nhung N.T.H.: Calcium carbonate coating on Ti-6Al-4 V by carbonate diffusion in calcium source at room temperature. Materials Today: Proceedings 66 (2022) 2929-2932.
  • [6] Memar M.Y., Adibkia K., Farajnia S., Kafil H.S., Maleki Dizaj S., Ghotaslou R.: Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as a drug delivery to osteomyelitis. Journal of Drug Delivery Science and Technology 54 (2019) 101307.
  • [7] Ren B., Chen X., Du S., Ma Y., Chen H., Yuan G., Li J., Xiong D., Tan H., Ling Z., Chen Y., Hu X., Niu X.: Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. International Journal of Biological Macromolecules 118 (2018) 1257-1266.
  • [8] Sirkiä S.V., Qudsia S., Siekkinen M., Hoepfl W., Budde T., Smått J.-H., Peltonen J., Hupa L., Heino T.J., Vallittu P.K.: Physicochemical and biological characterization of functionalized calcium carbonate. Materialia 28 (2023) 101742.
  • [9] Yang T., Ao Y., Feng J., Wang C., Zhang J.: Biomineralization inspired synthesis of CaCO3-based DDS for pH-responsive release of anticancer drug. Materials Today Communications 27 (2021) 102256.
  • [10] Wei Y., Sun R., Su H., Xu H., Zhang L., Huang D., Liang Z., Hu Y., Zhao L., Lian X.: Synthesis and characterization of porous CaCO3 microspheres templated by yeast cells and the application as pH value-sensitive anticancer drug carrier. Colloids and Surfaces B: Biointerfaces 199 (2021) 111545.
  • [11] Ezzati Nazhad Dolatabadi J., Hamishehkar H., Eskandani M., Valizadeh H.: Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces 117 (2014) 21-28.
  • [12] Dong J., Tao L., Abourehab M.A.S., Hussain Z.: Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration. International Journal of Biological Macromolecules 116 (2018) 1268-1281.
  • [13] Lee J.Y., Kim S.E., Yun Y.-P., Choi S.-W., Jeon D.I., Kim H.-J., Park K., Song H.-R.: Osteogenesis and new bone formation of alendronate-immobilized porous PLGA microspheres in a rat calvarial defect model. Journal of Industrial and Engineering Chemistry 52 (2017) 277-286.
  • [14] Wei P., Yuan Z., Jing W., Huang Y., Cai Q., Guan B., Liu Z., Zhang X., Mao J., Chen D., Yang X.: Strengthening the potential of biomineralized microspheres in enhancing osteogenesis via incorporating alendronate. Chemical Engineering Journal 368 (2019) 577-588.
  • [15] Öz U.C., Toptaş M., Küçüktürkmen B., Devrim B., Saka O.M., Deveci M.S., Bilgili H., Ünsal E., Bozkır A.: Guided bone regeneration by the development of alendronate sodium loaded in-situ gel and membrane formulations. European Journal of Pharmaceutical Sciences 155 (2020) 105561.
  • [16] Zhao Q., Cheng D.-Q., Tao M., Ning W.-J., Yang Y.-J., Meng K.-Y., Mei Y., Feng Y.-Q.: Rapid magnetic solid-phase extraction based on alendronate sodium grafted mesoporous magnetic nanoparticle for the determination of trans-resveratrol in peanut oils. Food Chemistry 279 (2019) 187-193.
  • [17] Hur W., Park M., Lee J.Y., Kim M.H., Lee S.H., Park C.G., Kim S.N., Min H.S., Min H.J., Chai J.H., Lee S.J., Kim S., Choi T.H., Choy Y.B.: Bioabsorbable bone plates enabled with local, sustained delivery of alendronate for bone regeneration. Journal of Controlled Release 222 (2015) 97-106.
  • [18] Kellesarian S.V., Abduljabbar T., Vohra F., Malignaggi V.R., Malmstrom H., Romanos G.E., Javed F.: Role of local alendronate delivery on the osseointegration of implants: a systematic review and meta-analysis. International Journal of Oral and Maxillofacial Surgery 46(7) (2017) 912-921.
  • [19] De Molon R.S., Fiori L.C., Verzola M.H., Belluci M.M., De Souza Faloni A.P., Pereira R.M.R., Tetradis S., Orrico S.R.: Long-termevaluation of alendronate treatment on the healing of calvaria bone defects in rats. Biochemical, histological and immunohistochemical analyses. Archives of Oral Biology 117 (2020) 104779.
  • [20] Jing C., Chen S., Bhatia S.S., Li B., Liang H., Liu C., Liang Z., Liu J., Li H., Liu Z., Tan H., Zhao L.: Bone-targeted polymeric nanoparticles as alendronate carriers for potential osteoporosis treatment. Polymer Testing 110 (2022) 107584.
  • [21] Miladi K., Sfar S., Fessi H., Elaissari A.: Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: From preparation to in vitro studies. Industrial Crops and Products 72 (2015) 24-33.
  • [22] Miladi K., Sfar S., Fessi H., Elaissari A.: Enhancement of alendronate encapsulation in chitosan nanoparticles. Journal of Drug Delivery Science and Technology 30 (2015) 391-396.
  • [23] Zhao Q., Xiao D., Li Y., Chen X., Hu K., Luo X., Yang F., Yang Z., Liu J., Feng G., Liu J., Feng D., Duan K.: Repair of rabbit femoral head necrosis by release of alendronate and growth differentiation factor-5 from injectable alginate/calcium phosphate carriers. Materials Today Communications 33 (2022) 104530.
  • [24] Aryan N., Behpour M., Benvidi A., Jookar Kashi F., Azimzadeh M., Zare H.R.: Evaluation of sodium alendronate drug released from TiO2 nanoparticle doped with hydroxyapatite and silver-strontium for enhancing antibacterial effect and osteoinductivity. Materials Chemistry and Physics 295 (2023) 126934.
  • [25] Zhao X., Zhu L., Fan C.: Sequential alendronate delivery by hydroxyapatite-coated maghemite for enhanced bone fracture healing. Journal of Drug Delivery Science and Technology 66 (2021) 102761.
  • [26] Lee J.H., Ko I.H., Jeon S.-H., Chae J.-H., Chang J.H.: Microstructured hydroxyapatite microspheres for local delivery of alendronate and BMP-2 carriers. Materials Letters 105 (2013) 136-139.
  • [27] Ali Said F., Bousserrhine N., Alphonse V., Michely L., Belbekhouche S.: Antibiotic loading and development of antibacterial capsules by using porous CaCO3 microparticles as starting material. International Journal of Pharmaceutics 579 (2020) 119175.
  • [28] Trushina D.B., Bukreeva T.V., Kovalchuk M.V., Antipina M.N.: CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering: C 45 (2014) 644-658
  • [29] Salomão R., Costa L.M.M., Olyveira G.M.D.: Precipitated Calcium Carbonate Nano-Microparticles: Applications in Drug Delivery. Advances in Tissue Engineering & Regenerative Medicine: Open Access 3(2) (2017) 336-340.
  • [30] Sudareva N., Suvorova O., Saprykina N., Vlasova H., Vilesov A.: Doxorubicin delivery systems based on doped CaCO3 cores and polyanion drug conjugates. Journal of Microencapsulation 38 (2021) 164-176.
  • [31] International Organization for Standarization: ISO 10993-5:2009, Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity.
  • [32] Zhong Q., Li W., Su X., Li G., Zhou Y., Kundu S.C., Yao J., Cai Y.: Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surf. B Biointerfaces 143 (2016) 56-63.
  • [33] Pietryga K., Panaite A.-A., Pamuła E.: Composite scaffolds enriched with calcium carbonate microparticles loaded with epigallocatechin gallate for bone tissue regeneration. Engineering of Biomaterials 166 (2022) 12-21.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7bb9ba7-3673-41c6-b610-84ab11e6814c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.