Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a novel improved hybrid permanent magnet Vernier machine (IHPMVM), which is characterized by less-rare-earth (LRE) and high torque-density. The proposed machine features a hybrid magnet arrangement, which adopts both rare earth (RE) and LRE magnets in one magnetic pole simultaneously. The proposed improved design can reduce the consumptions of RE materials by employing low-cost LRE magnets in place of RE magnets. Besides, the hybrid magnet arrangement design has a good magnetic flux-concentrated effect, resulting in high torque density. Particularly, dummy slots are introduced to achieve a flux modulation effect. This unique design effectively reduces the inevitable leakage flux, thereby further improving the utilization of PMs and torque density. Firstly, the machine configuration and its improved design are introduced and investigated. Then, a multi-objective optimization is carried out to obtain the optimal design of the proposed machine considering comprehensive performance. Furthermore, the preliminary electromagnetic characteristics of the proposed machine are compared and analyzed using finite element (FE) methods, which verifies the effectiveness of the optimization. Finally, the demagnetization risk of the LRE magnets is evaluated. This paper is expected to provide a technical reference for designing LRE machines.
Czasopismo
Rocznik
Tom
Strony
86--103
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz., wykr.
Twórcy
autor
- School of Intelligent Manufacturing and Materials Engineering, Gannan University of Science and Technology,156 Hakjia Avenue, Ganzhou, Jiangxi Province, China
Bibliografia
- [1] Zhu Z.Q., Howe D., Electrical machines and drives for electric, hybrid, and fuel cell vehicles, Proceedings of the IEEE, vol. 95, no. 4, pp. 746–765 (2007), DOI: 10.1109/JPROC.2006.892482.
- [2] Chau K.T., Chan C.C., Liu C., Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles, IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246–2257 (2008), DOI: 10.1109/TIE.2008.918403.
- [3] Wang H., Xue Y., Du J., Li H., Design and evaluation of modular stator hybrid-excitation switched reluctance motor for torque performance improvement, IEEE Transactions on Industrial Electronics, vol. 71, no. 10, pp. 12814–12823 (2024), DOI: 10.1109/TIE.2024.3357899.
- [4] Polinder H., van der Pijl F.F.A., de Vilder G -J., Tavner P.J., Comparison of direct-drive and geared generator concepts for wind turbines, IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 725–733 (2006), DOI: 10.1109/TEC.2006.875476.
- [5] Liu Z., Tang C., Fang Y., Pfister P.-D., A direct-drive permanent-magnet motor selective compliance assembly robot arm: modeling, motion control, and trajectory optimization based on direct collocation method, IEEE Access, vol. 11, pp. 123862–123875 (2023), DOI: 10.1109/ACCESS.2023.3329883.
- [6] Ishizaki A., Tanaka T., Takasaki K., Nishikata S., Theory and optimum design of PM Vernier motor, 1995 Seventh International Conference on Electrical Machines and Drives, Durham, UK, pp. 208–212 (1995), DOI: 10.1049/cp:19950864.
- [7] Kim B., Lipo T.A., Operation and design principles of a PM Vernier motor, IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3656–3663 (2014), DOI: 10.1109/TIA.2014.2313693.
- [8] Toba A., Lipo T.A., Generic torque-maximizing design methodology of surface permanent-magnet Vernier machine, IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1539–1546 (2000), DOI: 10.1109/28.887204.
- [9] Du Z.S., Lipo T.A., Torque performance comparison between a ferrite magnet Vernier motor and an industrial interior permanent magnet machine, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2088–2097 (2017), DOI: 10.1109/TIA.2017.2673812.
- [10] Zhu Z.Q., Liu Y., Analysis of air-gap field modulation and magnetic gearing effect in fractional-slot concentrated-winding permanent magnet synchronous machines, IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 3688–3698 (2018), DOI: 10.1109/TIE.2017.2758747.
- [11] Fan D., Quan L., Zhu X., Xiang Z., Que H., Airgap-harmonic-based multilevel design and optimization of a double-stator flux-modulated permanent-magnet motor, IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10534–10545 (2021), DOI: 10.1109/TIE.2020.3039207.
- [12] Yu Z., Kong W., Li D., Qu R., Gan C., Power factor analysis and maximum power factor control strategy for six-phase DC-biased Vernier reluctance machines, IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4643–4652 (2019), DOI: 10.1109/TIA.2019.2923593.
- [13] Cheng M., Wen H., Han P., Zhu X., Analysis of air-gap field modulation principle of simple salient poles, IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2628–2638 (2019), DOI: 10.1109/TIE.2018.2842741.
- [14] Zhao W., Gu C., Chen Q., Ji J., Xu D., Remedial phase-angle control of a five-phase fault-tolerant permanent-magnet Vernier machine with short-circuit fault, CES Transactions on Electrical Machines and Systems, vol. 1, no. 1, pp. 83–88 (2017), DOI: 10.23919/TEMS.2017.7911112.
- [15] Zhao X., Niu S., Fu W.N., Torque component quantification and design guideline for dual permanent magnet Vernier machine, IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1–5 (2019), DOI: 10.1109/TMAG.2019.2894872.
- [16] Niu S., Ho S.L., Fu W.N., A novel stator and rotor dual PM Vernier motor with space vector pulse width modulation, IEEE Transactions on Magnetics, vol. 50, no. 2, pp. 805–808 (2014), DOI: 10.1109/TMAG.2013.2280758.
- [17] Xu L., Zhao W., Liu G., Song C., Design optimization of a spoke-type permanent-magnet Vernier machine for torque density and power factor improvement, IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3446–3456 (2019), DOI: 10.1109/TVT.2019.2902729.
- [18] Liu W., Lipo T.A., Analysis of consequent pole spoke type Vernier permanent magnet machine with alternating flux barrier design, IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 5918–5929 (2018), DOI: 10.1109/TIA.2018.2856579.
- [19] Allahyari A., Torkaman H., A novel high-performance consequent-pole dual rotor permanent magnet Vernier machine, IEEE Transactions on Energy Conversion, vol. 35, no. 3, pp. 1238–1246 (2020), DOI: 10.1109/TEC.2020.2980146.
- [20] Jang D., Chang J., Investigation of doubly salient structure for permanent magnet Vernier machines using flux modulation effects, IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2019–2028 (2019), DOI: 10.1109/TEC.2019.2936022.
- [21] Jahns T., Getting rare-earth magnets out of EV traction machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains, IEEE Electrification Magazine, vol. 5, no. 1, pp. 6–18 (2017), DOI: 10.1109/MELE.2016.2644280.
- [22] Boldea I., Tutelea L.N., Parsa L., Dorrell D., Automotive electric propulsion systems with reduced or no permanent magnets: an overview, IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5696–5711 (2014), DOI: 10.1109/TIE.2014.2301754.
- [23] Chen Q., Xu G., Zhai F., Liu G., A novel spoke-type PM motor with auxiliary salient poles for low torque pulsation, IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4762–4773 (2020), DOI: 10.1109/TIE.2019.2924864.
- [24] Fontana M., Bianchi N., Design and analysis of normal saliency IPM spoke motor, IEEE Transactions on Industry Applications, vol. 56, no. 4, pp. 3625–3635 (2020), DOI: 10.1109/TIA.2020.2988842.
- [25] Seok C., Choi H., Seo J., Design and analysis of a novel spoke-type motor to reduce the use of rare-earth magnet materials, IET Electric Power Application, vol. 15, no. 11, pp. 1479–1487 (2021), DOI: 10.1049/elp2.12109.
- [26] Zhao W., Yang Z., Liu Y., Wang X., Analysis of a novel surface-mounted permanent magnet motor with hybrid magnets for low cost and low torque pulsation, IEEE Transactions on Magnetics, vol. 57, no. 6, pp. 1–4 (2021), DOI: 10.1109/TMAG.2021.3057391.
- [27] Zhu X., Torque component redistribution and enhancement for hybrid permanent magnet motor with permanent magnet offset placement, IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 631–641 (2023), DOI: 10.1109/TTE.2022.3177745.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7b5e415-9606-47d8-88ee-8874f55c2b4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.