PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of multi-walled carbon nanotubes with controlled inner and outer diameters by ethylene decomposition over Ni/MgO and Co/MgO catalysts

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, multi-walled carbon nanotubes (MWCNTs) with significantly different mean diameters were produced by catalytic CVD over Ni and Co-based supported catalysts. Our results indicate that Ni nanoparticles in the Ni/MgO catalyst are responsible for controlling the inner diameters of the carbon nanotubes. Contrary, Co nanoparticles in the Co/MgO catalyst control the outer diameters of MWCNTs. The "base-growth" mechanism and smaller diameters of the MWCNTs grown on the Ni/MgO catalyst are associated with a strong metal-support interaction (SMSI) resulting from NixMg1−xO mixed oxide formation. The concept of the weak metal-support interaction (WMSI) between Co nanoparticles and MgO for the Co/MgO catalyst confirms the "tip-growth" mechanism of the MWCNTs.
Wydawca
Rocznik
Strony
739--747
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauki 31, Kiev 03028, Ukraine
  • L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine Prosp. Nauki 31, Kiev 03028, Ukraine
Bibliografia
  • [1] Liu L.Q., Ma W.J., Zhang Z., Small, 7 (2011), 1504.
  • [2] Chattopadhyay S., Singh K.K., JMMCE, 11 (2012), 961.
  • [3] Arena A., Donato N., Saitta G., Galvagno S., Milone C., Pistone A., Microelectron. J., 39 (2008), 1659.
  • [4] Berkmans A.J., Ramakrishnan S., Jain G., Haridoss P., Carbon, 55 (2013), 185.
  • [5] Pasha A., Poursalehi R., Vesaghi M.A., Shafiekhani A., Physica B, 405 (2010), 3468.
  • [6] Zimmer K., Böhme R., Rauschenbach B., Physica E, 40 (2008), 2223.
  • [7] Shokry S.A., Morsi A.K., Sabaa M.S., Mohamed R.R., Sorogy H.E., Egypt. J. Petrol., 23 (2014), 183.
  • [8] Abdullayeva S.H., Musayeva N.N., Jabbarov R.B., Matsuda T., WJCMP, 4 (2014), 93.
  • [9] Rafique M.M.A., Iqbal J., JEAS, 1 (2011), 29.
  • [10] Baker R.T.K., Carbon, 27 (1989), 315.
  • [11] Wang Z., Navarrete J., GSC, 2 (2012), 91.
  • [12] Kudus M.H.A., Akil H.MD., Mohamad H., Loon L.E., J. Alloy. Compd., 509 (2011), 2784.
  • [13] Messina G., Modafferi V., Santangelo S., Tripodi P., Donato M.G., Lanza M., Galvagno S., Milone C., Piperopoulos E., Pis-Tone A., Diam. Relat. Mater., 17 (2008), 1482.
  • [14] Awadallah A.E., Aboul-Enein A.A., Eldesouki D.S., Aboul-Gheit A.K., Appl. Surf. Sci., 296 (2014), 100.
  • [15] Yan X., Liu C.-J., Diam. Relat. Mater., 31 (2013), 50.
  • [16] Piperopoulos E., Santangelo S., Lanza M., Faggio G., Messina G., Galvagno S., Pis-Tone A., Milone C., Diam. Relat. Mater., 20 (2011), 532.
  • [17] Biris A.R., Lupu D., Dervishi E., Li Z., Xu Y., Trigwell S., Misan I., Biris A.S., Phys. Lett. A., 372 (2008), 6416.
  • [18] Bahgat M., Farghali A.A., Rouby W.M.A., Khedr M.H., J. Anal. Appl. Pyrol., 92 (2011), 307.
  • [19] Narkiewicz U., Podsiadły M., Jedrzejewski R., Pełech I., Appl. Catal. A- Gen., 384 (2010), 27.
  • [20] Pinheiro J.P., Schouler M.C., Gadelle P., Carbon, 41 (2003), 2949.
  • [21] Ratkovic S., Vujicic D.J., Kiss E., Boskovic G., Geszti O., Mater. Chem. Phys., 129 (2011), 398.
  • [22] Shah K.A., Tali B.A., Mat. Sci. Semicon. Proc., 4 (2016), 67.
  • [23] Allaedini G., Tasirin S.M., Aminayi P., J. Alloy. Compd., 647 (2015), 809.
  • [24] Tsoufis T., Xidas P., Jankovic L., Gournis D., Saranti A., Bakas T., Karakassides M.A., Diam. Relat. Mater., 16 (2007), 155.
  • [25] Kathyayini H., Nagarajua N., Fonsecab A., Nagy J.B., J. Mol. Catal. A- Chem., 223 (2004), 129.
  • [26] Maccallini E., Tsoufis T., Policicchio A., La Rosa S., Caruso T., Chiarello G., Colavita E., Formoso V., Gournis D., Agostino R.G., Carbon, 48 (2010), 3434.
  • [27] Ran M., Chu W., Liu Y., Liu D., Zhang C., Zheng J., J. Energy Chem., 23 (2014), 781.
  • [28] Yeoh W.-M., Lee K.-Y., Chai S.-P., Lee K.-T., Mohamed A.R., J. Alloy. Compd., 493 (2010), 539.
  • [29] Chen R., Xie Y., Zhou Y., Wang J., Wang H., J. Energy Chem., 23. (2014), 244.
  • [30] Kuras M., Petit P., Petit C., Carbon, 49 (2011), 1453.
  • [31] Qiang Z., Yi L., Ling H., Wei-Zhong Q., Guohua L., Fei W., New Carbon Mater., 23 (2008), 319.
  • [32] Pan Y., Liu Y., Chi W., Shen Z., Mater. Lett., 65 (2011), 3362.
  • [33] ICDD PDF-2 Version 2.0602 (2006).
  • [34] Chen Y., Riu D.-H., Lim Y.-S., Met. Mater. Int., 14 (2008), 385.
  • [35] Feret F.R., Analyst, 123 (1998), 595.
  • [36] Li X., Liu Y., Fu L., Cao L., Wei D., Wang Y., Carbon, 46 (2008), 255.
  • [37] Cassell A.M., Raymakers J.A., Kong J., Dai H., J. Phys. Chem. B, 103 (1999), 6484.
  • [38] Gohier A., Ewels C.P., Minea T.M., Djouadi M.A., Carbon, 46 (2008), 1331.
  • [39] Leonhardt A., Hampel S., Müller C., Mönch I., Koseva R., Ritschel M., Elefant D., Biedermann K., Büchner B., Chem. Vap. Depos., 12 (2006) 380.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7b4b968-aba4-4f0b-8d54-69bbeb6f5a6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.