PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermoplastic polyurethanes for mining application processing by 3D printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Thermoplastic polyurethanes (TPU) found application in mining. Due to the excellent processing properties, thermoplastic polyurethanes can be also use to make elements that would facilitate miner's work. These elements, however, differ in dimensions depending on the person who is going to use them, that is why they should be personalized. In case of all the above studies, the elements or stuffs were made by means of the injection method. This method limits the possibility of producing mining’s stuff only to models that have a mould. The 3D printing technology developing rapidly throughout the recent years allows for high-precision, personalized elements’ printing, made of thermoplastic materials. Design/methodology/approach: The samples from thermoplastic polyurethanes were made using 3D printing and then subjected to the aging process at intervals of 2, 7 and 30 days. The samples were then subjected to a static tensile tests, hardness tests and FT-IR spectroscopy. Findings: The obtained results of mechanical tests and IR analyses show that the aging process in mine water does not affect the mechanical properties of the samples regardless of the aging time. IR spectral analysis showed no changes in the structure of the main and side polyurethane chains. Both mechanical and spectral tests prove that polyurethanes processed using 3D printing technology can be widely used in mining. Research limitations/implications: Only one type of TPU was processed in this work. Further work should show that synthetic mine water does not degrade the mechanical properties of other commercially available TPUs. Practical implications: The additive technology allows getting elements of mining clothing, ortheses, insoles or exoskeleton elements adapted to one miner. Originality/value: The conducted tests allowed to determine no deterioration of the mechanical properties of samples aged in synthetic mine water. TPU processing using 3D printing technology can be used in mining.
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Krahn Chemie Polska Sp. z o.o., ul. Marcelińska 90, 60-324 Poznań, Poland
Bibliografia
  • [1] I.R. Sare, J.I. Mardel, A.J. Hill, Wear-resistant metallic and elastomeric materials in the mining and mineral processing industries - an overview, Wear 250/1-12 (2001) 1-10, DOI: https://doi.org/10.1016/S0043-1648(01)00622-6.
  • [2] D.J. dos Santos, L.B. Tavares, G.F. Batalha, Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source, Journal of Achievements in Materials and Manufacturing Engineering 54/2 (2012) 211-217.
  • [3] E. Larson, Thermoplastic Material Selection. A Practical Guide, First Edition, Elsevier, 2015.
  • [4] W. Kaczorowski, D. Batory, P. Niedzielski, Application of microwave/radio frequency and radio frequency/magnetron sputtering techniques in polyurethane surface modification, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 286-291.
  • [5] L.A. Dobrzański, A.E. Tomiczek, A.W. Pacyna, Properties of the magnetostrictive composite materials with the polyurethane matrix reinforced with Terfenol-D particles, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 316-322.
  • [6] L.A. Dobrzański, A.E. Tomiczek, A. Szewczyk, K. Piotrowski, M.U. Gutowska, J. Więckowski, Physical properties of magnetostrictive composite materials with the polyurethane matrix, Archives of Materials Science and Engineering 57/1 (2012) 21-27.
  • [7] Z. Rożek, W. Kaczorowski, D. Lukas, P. Louda, S. Mitura, Potential applications of nanofiber textile covered by carbon coatings, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 35-38.
  • [8] N.P. Cheremisinoff, Materials Selection Deskbook, First Edition, Elsevier, 1996.
  • [9] M. Żenkiewicz, J. Richter, Influence of polymer samples preparation procedure on their mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 155-158.
  • [10] A. Wifi, A. Mosallam, Some aspects of blank-holder force schemes in deep drawing process, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 315-323.
  • [11] E. Turi, Thermal Characterization of Polymeric Materials, Elsevier, 1981.
  • [12] I.R. Clemitson, Castable Polyurethane Elastomers, CRC Press, 2008.
  • [13] D.J. Hill, M.I. Killeen, J.H. O’Donnell, P.J. Pomery, D. St John, A.K. Whittaker, Laboratory wear testing of polyurethane elastomers, Wear 208/1-2 (1997) 155160, DOI: https://doi.org/10.1016/S0043-1648(96)07514-X.
  • [14] M. Nałęcz (Ed.), Biocybernetics and biomedical engineering 2000, Vol. 4: Biomaterials, Exit Academic Publishing House, Warsaw, 2001 (in Polish).
  • [15] J.A. Brydson Plastics Materials, Fifth Edition, Elsevier, 1989.
  • [16] M. Mrówka, T. Machoczek, P. Jureczko, M. Szymiczek, M. Skonieczna, Ł. Marcoll, Study of selected physical, chemical and biological properties of selected materials intended for contact with human body, Polish Journal of Chemical Technology 21/1 (2019) 1-8, DOI: https://doi.org/10.2478/pjct-20190001.
  • [17] A.M.S. Hamouda, R.O. Saied, F.M. Shuaeib, Energy absorption capacities of square tubular structures, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 36-42.
  • [18] P. Olesik, M. Godzierz, M. Kozioł, Preliminary characterization of novel LDPE-based wear-resistant composite suitable for FDM 3D printing, Materials 12/16 (2019) 2520, DOI: https://doi.org/10.3390/ma12162520.
  • [19] R. Chatys, Ł.J. Orman, Technology and Properties of Layered Composites as Coatings for Heat Transfer Enhancement, Mechanics of Composite Materials 53/3 (2017) 351-360, DOI: https://doi.org/10.1007/s11029-017-9666-8.
  • [20] K. Wagner, M. Zanoni, A.B.S. Elliott, P. Wagner, R. Byrne, L.E. Florea, D. Diamond, K.C. Gordon, G.G. Wallace, D.L. Officer, A merocyanine-based conductive polymer, Journal of Materials Chemistry C 25/1 (2013) 3913-3916, DOI: https://doi.org/10.1039/C3TC30479E.
  • [21] P. Wagner, K.W. Jolley, D.L. Officer, Why do some alkoxybromothiophenes spontaneously polymerize?, Australian Journal of Chemistry 64/3 (2011) 335-338, DOI: https://doi.org/10.1071/ch10413.
  • [22] B. Kostka, M. Cykowska, M. Bebek, K. Mitko, Application of solid phase extraction assisted chromatography for the determination of fluorides in elevated waters, Ecological Engineering 32 (2013) 106-114, DOI: https://doi.org/10.12912/23920629/372 (in Polish).
  • [23] EN ISO 7619-1 Rubber, vulcanized or thermoplastic - Determination of indentation hardness - Part 1: Durometer method (Shore hardness).
  • [24] EN ISO 1798 Flexible cellular polymeric materials - Determination of tensile strength and elongation at break
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7ae0896-6929-43e3-8f51-4029e3de54d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.