PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of TC4 titanium alloy hollow shaft formed by cross wedge rolling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Production of hollow shafts satisfying mechanical performance requirements can well meet the needs of lightweight. The purpose of this work is to investigate the effect of cross wedge rolling (CWR) process parameters on microstructure and mechanical properties of TC4 titanium alloy hollow shafts, so as to ensure the feasibility of forming TC4 titanium alloy hollow shaft by CWR. The results demonstrate that the initial deformation temperature, area reduction, wall thickness, and mandrel have significant effects on the volume fraction of primary alpha phase (fα_p), morphology of alpha phase and interface of alpha/beta phase. The decrease of the fα_p, the increase of fine secondary alpha phase content and the increase of the number of alpha/beta phase interfaces can increase the strength of TC4 alloy hollow shafts, but decrease the elongation. When the initial deformation temperature is 950 °C, the contribution of the thick secondary alpha phase is similar to that of the primary alpha phase, resulting in the decrease of strength. The strength is further improved owing to the grain refinement with the increase of area reduction to 60%. The strength decreases as the wall thickness increases owing to the non-uniform microstructure distribution, which can be improved by increasing the area reduction appropriately. The comprehensive mechanical properties of the workpiece rolled with a mandrel are evidently higher than that rolled without a mandrel. Under any forming condition in this work, every fracture surface is covered with abundant dimples and voids, showing good ductile fracture characteristics.
Rocznik
Strony
737--751
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
  • Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology, No.30 Xueyuan Road, Haidian District, Beijing 100083, China
Bibliografia
  • [1] Zhao YQ, Chen YN, Zhang XM, Zeng XD, Wang L. Phase transformation and heat treatment of titanium alloys. 1st ed. Changsha: Central South University Press; 2012. (in Chinese).
  • [2] Li MQ, Li H, Luo J. Precision forging of titanium alloy. 1st ed. Beijing: Science Press; 2016. (in Chinese).
  • [3] Wang XY, Zhou JH, Pang KC. Development of isothermal forging of titanium alloy for aerospace. Shonghai Steel Iron Res. 2005;2:8–11 (in Chinese).
  • [4] Shan DB, Xu WC, Lu Y. Study on precision forging technology for a complex-shaped light alloy forging. J Mater Process Tech. 2004;151:289–93. https://doi.org/10.1016/j.jmatprotec.2004.04. 075.
  • [5] Shi ZF, Guo HZ, Liu R, Wang XC, Yao ZK. Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging. Trans Nonferrous Met Soc China. 2015;25:72–9. https://doi.org/10.1016/S1003-6326(15)63580-4.
  • [6] Hu ZH, Zhang KS, Wang BY, Zhang W. Theory and application of cross wedge rolling. 1st ed. Beijing: Metallurgical Industry Press; 1996. (in Chinese).
  • [7] Yang CP, Hu ZH. Research on the ovality of hollow shafts in cross wedge rolling with mandrel. Int J Adv Manuf Tech. 2015;83:67–76. https://doi.org/10.1007/s00170-015-7478-3.
  • [8] Ji HC, Liu JP, Wang BY, Fu XB, Xiao WC, Hu ZH. A new method for manufacturing hollow valves via cross wedge rolling and forging: numerical analysis and experiment validation. J Mater Process Technol. 2017;240:1–11. https://doi.org/10.1016/j.jmatp rotec.2016.09.004.
  • [9] Ma JW, Yang CP, Zheng ZH, Zhang KS, Ma WY. Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling. Int J Miner Metall Mater. 2016;23:1302–14. https://doi.org/10.1007/s12613-016-1352-7.
  • [10] Pater Z, Bulzak T, Tomczak J. Cross-wedge rolling of driving shaft from titanium alloy Ti6Al4V. Key Eng Mater. 2016;687:125–32. https://doi.org/10.4028/www.scientific.net/kem.687.125.
  • [11] Çakırcalı M, Kılıçaslan C, Güden M, Kıranlı E, Shchukin VY, Petronko VV. Cross wedge rolling of a Ti6Al4V (ELI) alloy: the experimental studies and the finite element simulation of the deformation and failure. Int J Adv Manuf Technol. 2013;65:1273–87. https://doi.org/10.1007/s00170-012-4256-3.
  • [12] Li JL, Wang BY, Qin Y, Fang S, Huang X, Chen P. Investigating the effects of process parameters on the cross wedge rolling of TC6 titanium alloy based on temperature and strain rate sensitivities. Int J Adv Manuf Technol. 2019;103:2563–77. https://doi.org/10.1007/s00170-019-03461-3.
  • [13] Li JL, Wang BY, Fang S, Chen P. A new process chain combining cross-wedge rolling and isothermal forging for theforming of titanium alloy turbine blades. Int J Adv Manuf Technol. 2020;108:1827–38. https://doi.org/10.1007/s00170-020-05451-2.
  • [14] Li JL, Wang BY, Ji HC, Zhou J, Fu XB, Huang X. Numerical and experimental investigation on the cross wedge rolling of powder sintering TC4 alloy. Int J Adv Manuf Technol. 2018;94:2149–62. https://doi.org/10.1007/s00170-017-0992-8.
  • [15] Feng PN, Yang CP, Wang BY, Li JL, Shen JX, Yang XM. Formability and microstructure of TC4 titanium alloy hollow shafts formed by cross-wedge rolling with a mandrel. Int J Adv Manuf Technol. 2021. https://doi.org/10.1007/s00170-021-06635-0.
  • [16] Li DD, Chai LL, Chen ZY, Jin TN, Shi GD, Jin YF, Feng ZY. Effects of forging temperature on microstructure and mechanical properties of 650 °C high temperature titanium alloy. In: Han YF, editor. High performance structural materials. Singapore: Springer; 2018. p. 477–83. https://doi.org/10.1007/978-981-13-0104-9_51.
  • [17] Chen CC, Coyne JE. Deformation characteristics of Ti-6Al-4V alloy under isothermal forging conditions. Metall Mater Trans A.1976;7:1931–41. https://doi.org/10.1007/BF02659826.
  • [18] Xu Y, Yang XJ, Yue W, Du DN. Microstructure and mechanical properties of TC4 titanium alloy subjected to multi-pass warm rolled. Spec Cast Nonferrous Alloys. 2017;7:697–700. https://doi.org/10.15980/j.tzzz.2017.07.001 (in Chinese).
  • [19] Li JL, Wang BY, Fang S, Chen P. Investigation of the microstructure evolution and mechanical properties of a TC6 alloy blade preform produced by cross wedge rolling. Archiv Civ Mech Eng. 2020;20(70):1–11. https://doi.org/10.1007/s43452-020-00078-2.
  • [20] Zhao HJ, Wang BY, Liu G, Yang L, Xiao WC. Effect of vacuum annealing on microstructure and mechanical properties of TA15 titanium alloy sheets. Trans Nonferrous Met Soc China. 2015;25:1881–8. https://doi.org/10.1016/S1003-6326(15)63795-5.
  • [21] Wang T, Guo HZ, Wang YW, Peng XN, Zhao Y, Yao ZK. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy. Mater Sci Eng A. 2011;528:2370–9. https://doi.org/10.1016/j.msea.2010.12.044.
  • [22] Abbasi SM, Momeni A. Effect of hot working and post-deformation heat treatment on microstructure and tensile properties of Ti–6Al–4V alloy. Trans Nonferr Met Soc. 2011;21:1728–34. https://doi.org/10.1016/S1003-6326(11)60922-9.
  • [23] Duan R, Cai JM, Li ZX. Effect of primary α phase volume fraction on tensile property and thermal stability of near-alpha TG6 titanium alloy. J Aeronaut Mater. 2007;27:17–21 (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7aaf886-5c4f-4671-8955-327af63038a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.