PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement Optical and Electrical Characteristics of Thin Film Solar Cells Using Nanotechnology Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a theoretical study for the distribution of nanocomposite structure of plasmonic thin-film solar cells through the absorber layers. It can be reduced the material consumption and the cost of solar cell. Adding nanometallic fillers in the absorber layer has been improved optical, electrical characteristics and efficiency of traditional thin film solar cells (ITO /CdS/PbS/Al and SnO2/CdS/CdTe/Cu) models that using sub micro absorber layer. Also, this paper explains analysis of J-V, P-V and external quantum efficiency characteristics for nanocomposites thin film solar cell performance. Also, this paper presents the effect of increasing the concentration of nanofillers on the absorption, energy band gap and electron-hole generation rate of absorber layers and the effect of volume fraction on the energy conversion efficiency, fill factor, space charge region of the nanocomposites solar cells.
Twórcy
autor
  • College of engineering in Qassim University, KSA and so, Faculty of Energy Engineering in Aswan University, Egypt
  • Aswan Faculty of Engineering, Aswan University, Egypt
  • Electronics & Nano Devices lab South Valley university, Qena, Egypt
  • Aswan Faculty of Engineering, Aswan University, Egypt
Bibliografia
  • [1] LEE T., A. EBONG. A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews. Elsevier. 2016, Vol. 12. DOI: 10.1016/j.rser.2016.12.028.
  • [2] MANNAN M., M.S. ANJAN, M.Z. KABIR, Modeling of current–voltage characteristics of thin film solar cells. Elsevier. 2011, Vol. 6. DOI: org/10.1016/j.sse.2011.05.010
  • [3] BAI Z., J. YANG, S. DEPBA, D. WANG, Thin film CdTe solar cells with an absorber layer thickness in micro- and sub-micrometer scale. APblied Physics Letters. 2011, Vol. 4. DOI: org/10.1063/1.3644160
  • [4] MOHAMED H. Theoretical study of the efficiency of CdS/PbS thin film solar cells. Elsevier. 2014, Vol. 10. DOI/: org/10.1016/j.solener.2014.07.017
  • [5] HUI P., R. ELISABETH, M. VEHSE. Cost-effective nanostructured thin-film solar cell with enhanced absorption. Applied Physics Letters. 2014, Vol. 7. DOI: org/10.1063/1.4901167
  • [6] KRISHNAKUMAR V, A. BARATI, H. J. SCHIMPER, A. KLEIN, AND W. JAEGERMANN. A possible way to reduce absorber layer thickness in thin film CdTe solar cells. Thin Solid Films. 2013, pp.535, 233. DOI: 10.1016/j.tsf.2012.11.085.
  • [7] PIRALAEE M, A. ASGARI, Modeling of optimum light absorption in random plasmonic solar cell using effective medium theory. Elsevier. 2016, Vol. 4. DOI: org/10.1016/j.optmat.2016.10. 021.
  • [8] NOTTLE D. Optical scattering and absorption by metal nanoclusters in GaAs. 1994, Vol. 6. DOI: org/10.1063/1.357445.
  • [9] VLADIMIR M. Optical Properties of Nanostructured Random Media. Springer, 2002. DOI: 10.1007/3-540-44948-5
  • [10] HAMAGUCHI C. Basic semiconductor physics. 2nd edition. Springer. 2010, pp. 201. DOI: 10.1007/978-3-642-03303-2
  • [11] JIMENEZ J., W. Tomm. Spectroscopic Analysis of optoelectronic semiconductors. Springer series in optical science. 2016, Pp. 27. DOI: 10.1007 /97 8-3-319-42349-4
  • [12] HARRISON P., Quantum wells, wires and dots: Theoretical and computational physics of semiconductor nanostructures. 3rd edition. Wiley Interscience. 2011, ch.13. ISBN: 978-1-119-96475-9
  • [13] FOX M., Optical properties of solids. 2nd edition. 2010, Pp.187.ISBN: 9780199573370.
  • [14] KON H, B. RIEGER. IAENG transactions on engineering technologies. 2013, Pp. 45. DOI: 10.1007/978-94-007-4786-9
  • [15] RIDLEY B. Quantum processes in semiconductors. 2013, Ch.16, Pp. 418. ISBN: 0191664898.
  • [16] SINGH P., N. RAVINDRA. Temperature dependence of solar cell performance -an analysis. Elsevier. 2012. Vol. 10. DOI: 10.1016/j. solmat. 2012.02.019.
  • [17] RAVINDRA N., S. AULUCK, V. SRIVASTAVA. Temperature dependence of the energy gap in PbS, PbSe, and PbTe. physica status solidi. 1979, Vol. 5. DOI: org/10.1002 /pssa. 2210 520255.
  • [18] NOGUEZ C. Optical properties of isolated and supported metal nanoparticles. Elsevier. 2005, Vol. 8. DOI: org/10.1016/j.optmat.2004.11.012
  • [19] C. NOGUEZ. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C, 2007, Vol.14. DOI: 10.1021/jp066539m.
  • [20] SAU T., A. ROGACH. Complex shaped metal nanoparticles. 2012, Pp. 369. DOI: 10.1002/978 3527652570
  • [21] GHOBADI N. Band gap determination using absorption spectrum fitting procedure. Springer. 2013, Vol. 4. DOI: 10.1186/2228-5326-3-2
  • [22] DAS R., S. PANDEY, Comparison of optical properties of bulk and nanocrystalline thin films of CdS using different precursors. International Journal of Material Science. 2011, Vol. 6. Iss.1. PP.35-40.
  • [23] SULTAN M., N. SULTANA. Analysis of reflectance and transmittance characteristics of optical thin film for various film materials, thicknesses and substrates. J Electr Electron Sys. 2015, Vol. 4. DOI:10.4172/2332-0796.1000160
  • [24] PALIK E., Handbook of optical constants of solids: handbook of thermo-optic coefficient of optical materials with applications. Elsevier. 1997, Pp.11. ISBN: 978-0-12-544415-6
  • [25] YANG Y., X. SUN, B.J. CHEN, T. CHEN, C. SUN, B. TAY, Z. SUN. Refractive indices of textured indium tin oxide and zinc oxide thin films. Elsevier. 2006. DOI: 10.1016 /j.tsf.2005. 12.265.
  • [26] SHANNONA R., O. MEDENBACHB, R. FISCHERC. Refractive Index and Dispersion of Fluorides and Oxides. J. Phys. Chem. Ref. Data. 2002, Vol. 31, No. 4. DOI: org/10.1063 /1.149 7384
  • [27] FREDERICK W. Optical properties of solids. 1972, Pp. 49. ISBN: 1483207331
  • [28] E. TAWSIF A., ANJUM, M. TANZIDUL. Parametric analysis of CdTe/CdS thin film solar cell. International Journal of Advanced Research in Computer and Communication Engineering. 2016, Vol. 5. DOI: 10.17148/IJARCCE.2016. 5684.
  • [29] MISHRA U., J. SINGH. Semiconductor device physics and design. Netherlands: Springer, 2008. [chapter 4]. ISBN 978-1-4020-6481-4
  • [30] S. PUSPITA., S. HOQUE, M. SHAMIM. Theoretical efficiency and cell parameters of AlAs/GaAs/Ge based new multijunction solar cell. IEEE. 2016, Vol. 6. DOI: org/10.1109/CEEICT .2016.7873128
  • [31] PRAKASH R., S. SINGH. Designing and modelling of solar photovoltaic cell and array. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE). 2016, pp 35-40Vol. 6. e-ISSN: 2278-1676,p-ISSN: 2320-3331.
  • [32] VAN B., Principles of semiconductor devices. 2011. bart@colorado.edu
  • [33] EL-NAHASS M., G. M. YOUSSEF and Z. SOHAIL. Structural and optical characterization of CdTe quantum dots thin films. Elsevier. 2014, Vol. 7. DOI: org/10.1016/j.jallcom.2014.03.104.
  • [34] SINGH J., Optical properties of condensed matter and applications. John Wiley& Sons, Ltd, 2006. DOI:10.1002/0470021942
  • [35] ATTIA A., M.M. EL-NAHASS. M.Y. EL-BAKRY AND D.M. HABASHY. Neural networks modeling for refractive indices of semiconductors. Optics Communications. 2013, DOI: 10.1016/j.optcom.2012.09.016.
  • [36] TRIPATHY S., "Refractive indices of semiconductors from energy gaps", Optical Materials. Elsevier, Vol. 7, 2015. http://dx.doi.org/10.1016/j.optmat.2015.04.026
  • [37] REDDY R., ANJANEYULU S., " Analysis of the Moss and Ravindra relations, Physica Status Solidi, Basic solid state physics. P.P 17. 1992. DOI: org/ 10.1002/pssb. 2221740238
  • [38] MOHAMED H., Enhancing the performance of thin film CdS/PbS photovoltaic solar cells. Philosophical Magazine. 2014. Vol. 22. DOI: org/10.1080/14786435.2014.961586
  • [39] GHOSH H, S. MITRA, S. DHAR AND A. NANDI. Light-harvesting properties of embedded tin oxide nanoparticles for partial rear contact Silicon solar cell. Springer Science. 2016, Vol. 12. DOI: org/10.1007/s11468-016-0443-7
  • [40] Blazev A., Photovoltaics for commercial and utilities power generation. 2013, ch.1. ISBN. 9781304233240
  • [41] SAFA R., A. NEWAZ, M. ASADUZZAMAN, M. MAKSUDUR and K. AHMED. Numerical dataset for analyzing the performance of a highly efficient ultrathin film CdTe solar cell. Elsevier. 2017. Vol.5. DOI: org/10.1016/j.dib.2017.04.015
  • [42] WHITAKER J., The electronics handbook. 1996, Ch. 9. Pp.124. ISBN. 0849383455.
  • [43] HANDBUSH G., Mo Molybdenum: Physical Properties, Part 2. Electrochemistry 8th edition. 2013, Pp. 62. DOI: 10.1007/978-3-662-09293-4
  • [44] DULEY W., UV Lasers: Effects and Applications in Materials Science. 2005, Ch. 2. pp. 40. ISBN: 978-0521464987
  • [45] MICHEAL F., Radiative heat transfer 3rd edition. 2013, Pp. 77. ISBN: 9780123869449
  • [46] YANCHUK B., Laser Cleaning: Optical Physics. Applied Physics and Materials Science. 2002, Pp. 136. DOI: org/10.1142/495
Uwagi
The present work was supported by Nanotechnology Research Center at Aswan University that is established by aiding the Science and Technology Development Fund (STDF), Egypt, Grant No: Project ID 505, 2009-2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7a55d2e-1807-43d0-ac67-4779255eef0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.