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Abstract—Earth’s atmosphere is monitored by a multitude of

sensors. It is the troposphere that is of crucial importance

for human activity, as it is there that the weather phenom-

ena take place. Weather observations are performed by sur-

face sensors monitoring, inter alia, humidity, temperature and

winds. In order to observe the developments taking place in

the atmosphere, especially in the clouds, weather radars are

commonly used. They monitor severe weather that is associ-

ated with storm clouds, cumulonimbuses, which create pre-

cipitation visible on radar screens. Therefore, radar images

can be utilized to track storm clouds in a data fusion system.

In this paper an algorithm is developed for the extraction of

blobs (interesting areas in radar imagery) used within data

fusion systems to track storm cells. The algorithm has been

tested with the use of real data sourced from a weather radar

network. 100% of convection cells were detected, with 90%

of them being actual thunderstorms.

Keywords—big data, blob extraction, data fusion, data integra-

tion, image processing, radar images.

1. Introduction

Blob is an image area, with some of its properties being

similar or constant. Blobs are used for detecting image re-

gions that may represent specific objects. Such an approach

is commonly used to track objects in data fusion systems.

Data fusion is a process solving the problem of association,

combination and correlation of data coming from a single

or from multiple sources. It aims to determine the precise

position and to estimate the identity of, as well as to as-

sess situations and threats of crucial significance. Target

tracking, image processing and surveillance are among the

typical fields of application of data fusion techniques. The

said techniques combine data from multiple sensors, just

as humans and animals continuously integrate information

coming from their senses, to get an understanding of the

current situation within a specific environment.

A sensor network (SN) involves the deployment of a cer-

tain number of sensors in a wide area – probably with

overlapping fields of view – which acquire data from the

environment. Necessarily, suitable procedures to interpret

data captured by a single sensor must be developed in or-

der to provide an integrated and high-level view of the

situation. The field of research dealing with data fusion fo-

cuses on studying problems arising from the combination

and interpretation of multiple data sources. In this paper,

meteorological radars are used as data sources. The main

contribution of this paper is the description of a novel algo-

rithm used for extracting blobs from weather radar data and

relied upon to detect convective cells and, thus, to identify

potential thunderstorms.

The main contribution of this paper is the description of

a novel algorithm used for extracting blobs from weather

radar data and relied upon to detect convective cells and,

thus, to identify potential thunderstorms.

The paper is organized as follows. Section 2 describes the

data fusion process. In Section 3 related work is presented.

Section 4 describes the process of radar data acquisition

and blob extraction. Section 5 shows a practical application

example. Sections 6 and 7 conclude the paper.

2. Data Fusion Process

Fusion processes are classified according to a model worked

out by the Joint Directors of Laboratories (JDL) and serv-

ing as the prevailing theory used to describe fusion sys-

tems [1], [2]. JDL classifies fusion processes according to

the abstraction and the refinement of the entities involved.

The canonical JDL model establishes five operational lev-

els in the transformation of input signals into decision-ready

knowledge, namely:

• signal feature assessment (L0),

• entity assessment (L1),

• situation assessment (L2),

• impact assessment (L3),

• process assessment (L4).

Low-level data fusion, corresponding to JDL L0 and L1

levels, designates procedures aimed to pre-process sensor

signal and to estimate the properties of isolated objects.
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Level 1 assesses variables describing the state of entities,

for example: position, velocity, size, etc. In order to per-

form entity assessment, information about such variables

has to be extracted from data pre-processed in level zero.

Considering computer vision, the problem revolves around

detection of entities in images. Images consist of blobs –

areas of an image sharing similar or constant properties.

This paper describes a novel blob detection technique ap-

plied with regard to radar images in data fusion schemes.

This technique will be used to extract important variables

for high level data fusion.

High-level information fusion procedures, corresponding to

L2 and L3, aim to obtain a description of the relations be-

tween individual objects in a perceived scenario. These

relations are usually expressed with interpretable symbolic

terms (e.g. actions, intentions, threats), instead of the usual

numerical measures (e.g. density functions, movement vec-

tors) calculated in L1. L4 tasks are aimed at planning and

performing procedures to improve the entire fusion process,

from low-level data acquisition to high-level situation as-

sessment. A revised JDL data fusion model is shown in

Fig. 1.

Fig. 1. JDL data fusion model [2].

Level 4 (process enhancement) tasks – also known as ac-

tive fusion – aim to modify data acquisition and processing

procedures after DIF, in order to improve the quality of the

results obtained. Generally speaking, process enhancement

consists in improving the fusion procedure by using feed-

back generated at a more abstract level. For instance, the

behavior of a tracking algorithm can be changed once a gen-

eral interpretation of the scene has been inferred. If the

system recognizes that an object is moving out of the sen-

sor range, the tracking procedure could be informed to be

ready to delete this track in the near future. As previously

mentioned, the framework includes a general mechanism to

generate recommendations for the tracking procedure based

on rule triggering. In their basic form, these recommenda-

tions are direct manipulations of the parameters or the data

stored by the tracker.

The detection and characterization of activities and threats

requires that the states of situational items and their rela-

tionships within a specific context be identified. From the

point of view of the fusion process, the context may be in-

formally defined as a set of background circumstances that

are not of prime interest for the system, but have potential

relevance towards optimal estimation [3]. When a context

is activated (i.e. some circumstances hold), more informa-

tion is available to obtain and improve estimations con-

cerning the problem entities. This contextual information,

expressed in the form of complementary knowledge or con-

straints, encompasses information about objects, processes,

events and relationships between them, as well as partic-

ular goals, plans, capabilities and policies of the decision

makers. Such a diversity makes formal context representa-

tion a significant challenge.

In the fusion environment, context usually refers to any

piece of data, additional to sensor inputs, that is useful

for source aggregation. In line with [4], [5], Sycara et al.

state that parts of the context are the significant features

or the history of a situation that influence the features of

other situations, as well as the expectations of what is to

be observed and the interpretation of what has been ob-

served [6]. They also propose the high-level information

fusion environment (HiLIFE) fusion model for battlefield

management. To these authors, situational context is a “first

class entity”, but not exactly in the sense proposed by

McCarthy. According to their interpretation, it is rather

a computable description of terrain elements, external re-

sources and potential inferences, essential to supporting the

fusion process.

This work follows the same principle. A model of the sce-

nario and a relevant background have been created, using

situational and expert knowledge, to drive the high-level

fusion process. Content specific to the context of the mete-

orological surveillance problem is described in Section 4.

The context can therefore be used to:

• explain observations,

• define hypotheses,

• identify areas of interest in order to focus on new

data collection,

• refine ambiguous estimations,

• provide for the mutual relationships between differ-

ent fusion levels [6], [7].

Weather radars are the main source of near real-time data

concerning thunderstorms. Weather radars provide data

about precipitation intensity in a form of reflectivity fields.

Reflectivity is correlated with the rainfall rate. Data is

presented in the form of a 3D reflectivity field. After pro-

cessing, that 3D field can be transformed into a graphical

representation. Figure 2 shows such a graphical represen-

tation – a radar image of a tornadic supercell thunderstorm
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near the village of Zimna Wódka, Poland, observed on Au-

gust 15th, 2008.

Fig. 2. Maximum reflectivity radar image of a supercell thunder-

storm (circled). All thunderstorms have a specific radar signature:

a high reflectivity core with well-defined borders. Hence, their

position and area may be extracted relatively easily from a radar

scan. (For color pictures visit www.nit.eu/publications/journal-jtit)

This data fusion problem requires appropriate data acquisi-

tion, entity extraction and tracking algorithms. Radar data

has to be collected from a remote server, and then entities

have to be extracted based on the data acquired. After ex-

traction, proper filtering and tracking processes need to be

performed. In order to gain proper situational awareness,

relationships between the storm cells and their environment

should be deduced.

3. Related Work

The majority of papers dealing with blob detection and ex-

traction are related, to a certain degree, to computer vision.

As surveillance is one of the potential applications, these

algorithms are commonly applied in object tracking [8], [9].

Computer vision blob detection algorithms deal with very

complex images representing many objects. That leads to

the development of a multitude of approaches. Some se-

lected approaches will be described in this chapter.

A very common approach is based on Laplacian of the

Gaussian generators [10]. In this case, a convolution of an

image f (x,y) and a Gaussian kernel is made:

g(x,y, t) =
1

2πt
e−

x2+y2
2t , (1)

where t is scale space representation. Then Laplacian op-

erator is applied and the result is:

∇2L = Lxx +Lyy . (2)

The gLoG using those operators [10] has the ability to

estimate shapes, orientations and scales of blobs.

A different Gaussian kernel is another example of the blob

detection technique. This instance relies on scale-invariant

feature transform [11]. This algorithm aims to detect fea-

tures of objects presented in images. It utilizes a variety

of Gaussian operators for scale space extrema localization

in a series of smoothed and resampled images. It also

uses a multitude of techniques for solving problems re-

sulting from the presence of geometric distortions, index-

ing, matching, clustering, model verification and hypothesis

testing.

Satellite images are also good sources of information about

convection cells. In [12], the authors proposed variational-

data-assimilation tools that are used to track and ana-

lyze convective cloud systems based on second generation

Meteosat images. This approach is based on the analy-

sis of cloud top temperature values collected from radar

images.

In [13], another way of transforming infrared satellite im-

ages is proposed. An extended maximatransform technique

is used to detect convective cells. A method relying on

learning a spatio-temporal context model is deployed as

well. The confidence map of adjacent moments is cal-

culated.

2D satellite images suffer from considerable disadvantages.

This kind of imaging provides two-dimensional informa-

tion about the surface of cloud tops. This is a significant

limitation. Radar data, however, delivers a full 3D profile

of the storm, with each significant pattern represented.

A multitude of algorithms and techniques were developed

based on the aforementioned approaches, but all those tech-

niques are rather complex. They are also designed to take

into consideration the problem of image processing.

Blob extraction is related to blob detection, but these two

terms cannot be considered to constitute the same process.

The main technique that is applied to solve the problem

of blob extraction is called connected-component label-

ing [14]. It is based on the concept of applying the graph

theory to a set of connected components. This concept re-

lies on a unique methods used for labeling the connected-

components within a set of elements. The “one component

at a time” variant of connected-component labeling is used

in the proposed algorithm.

4. Convective Cells and Radar Patterns

Meteorology glossaries describe convection cells as dis-

tinct units of convection that survive for 20–30 minutes

and are characterized by radar reflectivity [15]. Convection

cells are associated with the presence of cumuliforms, es-

pecially cumulonimbus clouds [16] that are responsible for

the creation of thunderstorms. Cumulonimbus clouds can

generate severe weather events: flash floods [17], signifi-

cant hail [18], severe wind gusts [19] and tornadoes [20].

Their presence can be detected on radar images as an area

of significant reflectivity (values greater than 40 units of

reflectivity), with well-defined borders. Those reflectivity

fields are moving in the direction and at the velocity of the
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air masses. Convective clouds may also be organized into

multi-cellular structures, may have the shape of a squall

line or may transform into a supercell. All of the afore-

mentioned forms of convective clouds may create some

severe weather, so the process of analyzing radar data is

very useful and necessary.

Some other important properties of reflectivity areas related

to storm cells need to be taken into consideration. These

include, for example, the following:

• well-defined borders,

• no rapid changes in shape,

• no rapid changes in velocity,

• good predictability of movement,

• deviation from the mean movement in the case of

a super-cell [21],

• elongated shape in the case of a squall line [22].

These properties are of key value and facilitate the devel-

opment of an efficient algorithm.

5. Blob Extraction from a Radar Image

Weather radar data is available online, mainly in the form

of bitmap images, where reflectivity fields are presented

for a defined horizontal cross-section of a 3D radar field

with the use of the Cartesian coordinate system. Each

pixel has a color value equivalent to the actual reflectivity

value. Usually, information about value intervals and corre-

sponding colors is provided as well. The bitmap (shown in

Fig. 3) has to be transformed into a structure containing

numerical reflectivity values based on information about

intervals and their colors.

Fig. 3. Example of a radar image.

Instead of a matrix containing all values, a reflectivity vec-

tor V of non-zero values is proposed:

V = [v1, . . . ,vn] , (3)

with

vk = [xk,yk,λk] for 1 ≤ k ≤ n , (4)

where vk is k-th reflectivity point, xk is x coordinate of k-th

value, yk is y coordinate of k-th value, λk is k-th value.

After conversion, the reflectivity vector has to be trans-

formed into a set of blobs. A blob can be considered as

a region of the image in which some of proprieties are

constant or approximately constant.

Typically, a storm is depicted in radar image in the form

of an area with very high reflectivity, corresponding to the

storm’s precipitation core (> 44 dBz), which is surrounded

by areas of low precipitation. Thus, in order to perform

the vector-to-blob transformation, a reflectivity threshold is

applied and another vector of values is created. A radar

image with a threshold value applied is shown in Fig. 4.

Fig. 4. Radar image with a threshold value applied.

Then, the adjacent points of the reflectivity vector are

grouped into blobs based on the following adjacency rule

(connected-components labeling). Point k is adjacent to

point l when:

k = [xk,yk] , (5)

l = [xl ,yl ] , (6)

xl −d ≤ xk ≤ xl +d , (7)

yl −d ≤ yk ≤ yl +d , (8)

where d is the permitted distance parameter. Blob b is

represented by its center and a set of adjacent points P.

The center of a blob is estimated as C = [xc,yc] where:

xc =
(

min(xp)+max(xp)
)

·0.5 , (9)

yc =
(

min(yp)+max(yp)
)

·0.5 , (10)

p = [xp,yp,λp] , (11)
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for p ∈ P. The blobs whose surface area is lower than the

minimum applied value are removed from the blob set B.

During this study, the minimum threshold was set at 16

points. The detected blobs are presented in Fig. 5.

6. Intermediate Level Entities

To ensure good separation between data acquisition and

fusion processes, an additional level of entities was added.

Because storms can vary in dimensions and in shape, a dif-

ferent representation is necessary. Reflectivity field r was

introduced as a primary storm cell representation. A re-

flectivity field consists of a set P of adjacent points ex-

tracted from the blob, the center of the blob, its dimensions

and partitioning set of reflectivity points. The partitioning

scheme was based on blob dimensions and storm orienta-

tion. Storm orientation is horizontal when its blob width

is greater than or equal to its blob height. Otherwise, ori-

entation is vertical.

Let us consider partitioning set E. E consists of a series

of entries e. Entry e = [a, l,u] is the argument of an en-

try. When orientation is horizontal, for each distinct x the

coordinates of reflectivity points set P element p are:

l = min(yp) : p = [xp,yp] ∈ P∧ xp = x , (12)

u = max(yp) : p = [xp,yp] ∈ P∧ xp = x , (13)

a = x . (14)

When orientation is vertical, for each distinct y the coordi-

nates of reflectivity points set P element p are:

l = min(xp) : p = [xp,yp] ∈ P∧ yp = y , (15)

u = max(xp) : p = [xp,yp] ∈ P∧ yp = y , (16)

Fig. 5. Detected blobs (highlighted as rectangles).

a = y . (17)

E is structured in the ascending order, based on argument a.

Then, based on the resulting partitioning set E, a subset of

characteristic points I can be extracted:

E = [e1, . . . ,em] , (18)

I = [i1, . . . , in] , (19)

ik = [uk,vk], k ∈ {1, . . . ,n} , (20)

i1 =
[a1,(l1 +u1)

2

]

, (21)

in =
[am,(lm +um)

2

]

, (22)

ik=
[

ao,
lo+uo

2

]

⇐⇒

√

(ao−uk)2+
( lo+uo

2
−vk

)2
≥d , (23)

k ∈ {2, . . . , n−1} , (24)

o = 2, . . . , m−1 , (25)

where d is the minimum required distance.

After extraction, I is transformed from the argument value

form into the standard Cartesian coordinate formula, based

on orientation.

The center of the reflectivity field is a point chosen from I,
at which the difference between distances from it to i0 is

minimal. If the characteristic set comprises two elements,

the point of average coordinates is computed and chosen

as the center. Figure 6 presents the reflectivity field and

the set of characteristic points (circle) wit a center (double

circle).

Fig. 6. Reflectivity fields with a set of characteristic points.

This set of characteristic points is used as a set of descrip-

tors. Those descriptors will be used in the data fusion

process to determine the position of the storm, its size,

velocity and its character.
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7. Implementation

The algorithm was implemented in C#. The first element

developed was a class representing the data repository of-

fering a data download function. Diagram class of data

repository is shown in Fig. 7. A repository from the radar-

opadow.pl website was used, as it offers different types of

historical data (CMAX, CAPPI). This database is essen-

tial for testing purposes. Column maximum (CMAX) is

a type of radar image which presents the spatial distribu-

tion of maximum reflectivity along the vertical profile of

the atmosphere. Constant altitude plan position indicator

(CAPPI) products present a horizontal cross-section of re-

flectivity at a constant altitude.

Fig. 7. Data repository class diagram.

The second step is to convert the bitmap image into a re-

flectivity array using a class for conversion with a proper

reflectivity scale. It offers a functionality enabling to con-

vert bitmaps into reflectivity arrays. For each pixel the

demanded threshold is computed by the method shown

in Fig. 8. A flowchart of the conversion process is shown

in Fig. 9. getValue returns the pixel color value. The

distance between the pixel color and each scale color is

computed. The minimum distance is chosen according to

the following rule:

int Ra = c1.R − c2.R;

int Ga = c1.G − c2.G;

int Ba = 1.B − c2.B;

return

Math.Sqrt (Ra · Ra + Ga · Ga + Ba · Ba);

This approach is used due to transformations (coordinate

transformations, color interpolation, scaling, etc.) of the

image in the repository. R, G, B are red, green, blue pixel

color values.

Fig. 8. Pixel-to-value conversion flowchart.

After the reflectivity array has been worked out, it may be

transformed into a blob collection based on the adjacency

rule (connected-components labeling). The adjacency tol-

erance is set at 2 pixels for each direction. This is when

the blobs are detected. The next step is to perform proper

partitioning and to acquire the descriptors (Fig. 10).

Final partitioning may be performed by applying the func-

tion shown in Fig. 11.

8. Testing

A set of radar images was compiled using CMAX radar

scans collected between 12:00 UTC on August 11th, 2018

and 04:00 UTC on August 12th, 2018. CMAX radar

scans present maximum reflectivity along the vertical pro-

file. This approach leads to convective cells being clearly

visible. Radar scans were taken in 10-minute intervals.

97 radar images were collected for testing. The period

between 12:00 UTC on August 11th, 2018 and 04:00

UTC on August 12th, 2018 was chosen due to the pres-

ence of a variety of different forms of convection cells.
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Fig. 9. Conversion process flowchart.

Fig. 10. Acquisition of descriptors.

A large 300-kilometer bow echo formed in the Czech Re-

public and extended through Poland, all the way to the

Baltic Sea. It shows a variety of convection cell forms,

which was the primary reason behind its selection. Dur-

ing the review process, the convection cells were marked.

Then, the algorithm was used to extract blobs and descrip-

tors. The number of marked cells in the set varied between

1 and 17, with the average value equaling 10.05. The mean

number of cells detected with the use of the algorithm was

9.59. The highest difference related to a specific radar scan

was 5. The time distribution of the number of cells ob-

served (marked by a meteorologist) and detected by the

algorithm is shown in Fig. 12.

This difference stems from the fact that a single multi-

cellular storm was detected as one big system, rather than

as individual, interconnected heavy rainfall cells. In fact,
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Fig. 11. Final partitioning algorithm structure.

Fig. 12. Time distribution of detected and marked cells.

the multi-cellular storm referred to as a bow echo may be

considered to constitute a single entity, because of its con-

tinuous character, persistence and structure. This particu-

lar case is shown in Fig. 13. The convection cells which

eventually did not produce thunderstorms were detected as

well. The algorithm successfully detected convection cells,

generated descriptors and extracted blobs. It also detected

cells over the Czech Republic that were merging into the

bow echo storm. A set of characteristic points of the bow

echo storm was established and may be utilized in further

tracking algorithms for predicting the motion of storms.

100% convection cells were detected. Up to 90% of them

Fig. 13. Bow echo composed of many connected cells (up)

detected as an organized system (down).

were thunderstorms. The 10% difference stems from the

fact that not all convection cells actually produce a thun-

derstorm.
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9. Conclusions

The algorithm developed, based on connected- components

labelling with a new technique for detects all convection

cells within a representative set. It applies partitioning to

blobs. It boasts low computational complexity is based on

an easily understandable concept and may be used, after

adaptation, in other fields relying use radar data.
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